Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dalton Trans ; 53(8): 3731-3743, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38299455

RESUMO

The development of photocatalysts plays a pivotal role in facilitating the production of green hydrogen energy through water splitting. In this study, one-dimensional (1D) organic-inorganic ZnCdS(EDA)/Ni@NiO (EDA: ethylenediamine) nanorods were prepared by combining organic molecules of EDA into ZnCdS. The EDA molecule possesses two amino functional groups with strong electron-donating capacity, thereby facilitating electron transfer to ZnCdS(EDA)/Ni@NiO and enabling efficient hydrogen evolution through photocatalytic water splitting. The H2 evolution rate of ZnCdS(EDA)/Ni@NiO was 159 µmol g-1 h-1 in the absence of sacrificial agents, and its H2 evolution rate in the system with EDA as the sacrificial agent can reach 5760 µmol g-1 h-1. The combination of EDA, a S vacancy, and heterojunction was proved to be the main factor for improving the separation and transfer rate of photogenerated carriers. The incorporation of ZnCdS(EDA)/Ni@NiO enhances the participation of photogenerated electrons in the photocatalytic hydrogen evolution reaction, thereby improving the overall photocatalytic activity. The synthesis of this one-dimensional composite catalyst holds great potential for advancing the development of efficient photocatalytic materials.

2.
Molecules ; 28(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894553

RESUMO

Easily soluble organic components in Santanghu long flame coal (SLFC) from Hami (Xinjiang, China) were separated by CS2 and acetone mixed solvent (v/v = 1:1) under ultrasonic condition, and the extract residue was stratified by carbon tetrachloride to obtain the light raffinate component (SLFC-L). The effect of solvent treatment on the composition and structure of the coal and its rapid pyrolysis products was analyzed. Solvent treatment can reduce the moisture content in coal from 9.48% to 6.45% and increase the volatile matter from 26.59% to 28.78%, while the macromolecular structure of the coal changed slightly, demonstrating the stability of coal's complex organic structure. Compared with raw coal, the relative contents of oxygen-containing functional groups and aromatic groups in SLFC-L are higher, and the weight loss rates of both SLFC and SLFC-L reached the maximum at about 450 °C. In contrast, the loss rate of SLFC-L is more obvious, being 33.62% higher than that of SLFC. Pyrolysis products from SLFC at 450 °C by Py-GC/MS are mainly aliphatic hydrocarbons and oxygenated compounds, and the relative contents of aliphatic hydrocarbons decreased from 48.48% to 36.13%, while the contents of oxygenates increased from 39.07% to 44.95%. Overall, the composition and functional group in the coal sample were changed after solvent treatment, resulting in a difference in the composition and distribution of its pyrolysis products.

3.
Nanoscale ; 14(41): 15316-15326, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36217674

RESUMO

In this work, the defective Cu-BDC with different defect concentration and Cu1+/Cu2+ coordinatively unsaturated sites (CUS) content were designed and synthesized by introducing defective linkers with different pKa values. The low-concentration defects in Metal-organic frameworks (MOFs) structure act as the active sites to enhance their photocatalytic activity. In contrast, the high concentration defects serve as the recombination centers of photogenerated electrons and holes to decrease the transfer efficiency of charge carriers. Cu-BDC-FBA shows an excellent bifunctional photocatalytic performance for overall water splitting due to the suitable defect concentration, which gives an oxygen production rate of 3114 µmol g-1 h-1 and hydrogen production rate of 16 829 µmol g-1 h-1, respectively. It is expected that this study can deepen the understanding of the relationship between defects and photocatalytic activity, and provide a new idea for the design and synthesis of defective MOFs photocatalysts with excellent performance.

4.
Sci Rep ; 10(1): 1939, 2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029883

RESUMO

The exploration of advanced water treatment technologies e.g. heterogeneous photocatalysis is the most promising way to address organic pollution issues. Semiconductors based bimetallic photocatalysis with wide bandgap, have displayed splendid degradation performance in the UV light region, but their extension to the visible light/near infra-red region is still a matter of great concern. CuO, Co(OH)2, CoO and Co(OH)2/CuO nanocomposites were synthesized via simple co-precipitation method and further practiced for Rhodamine B (RhB) decomposition by introducing per-sulfate (PS) as a sacrificial agent. Results revealed that Co(OH)2/CuO catalyst had shown robust catalytic activity for RhB photodegradation (degradation time 8 min, k = 0.864 min-1) under light illumination, significantly less (12-60 times) than the other reported bimetallic catalysts. Catalyst also have verified excellent performance for a broader pH range (5-9) with excellent stability. Main reactive species responsible for the photocatalytic reaction were sulfate (SO4•-) and superoxide (O2•) radicals, duly verified by ESR and by using radical scavengers. With outstanding recycling abilities, this is probably the fewer successful attempt for RhB decolorization and can be highly favorable for effluent treatment by using the synergic effect of absorption and photodegradation.

5.
RSC Adv ; 8(17): 9192-9201, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35541850

RESUMO

Development of heterogeneous catalysts for the cycloaddition of CO2 with epoxides to produce cyclic carbonates is a hot issue in the field of chemical fixation of carbon dioxide. It is fairly promising as production of by-products is quite low. In this study, the [Zn3(BTC)2]/n-Bu4NBr catalytic system was investigated for the solventless cycloaddition of carbon dioxide with epoxides and had an excellent synergetic effect in promoting the reaction. The reaction parameters were moderate i.e. (130 °C and 13 bar CO2 pressure) and were selected by a study of the catalytic system. Under the optimal reaction conditions, the yield of cyclic carbonate reached 99%. A decrease in the yield of cyclic carbonate was not apparent after [Zn3(BTC)2] was reused three times, indicating that [Zn3(BTC)2] was stable. At the same time, the catalytic activity of the catalyst for other epoxides was also verified. The acidic and alkaline nature of the [Zn3(BTC)2] catalyst did not change obviously after recycling the catalyst three times. In this study it is also verified that the [Zn3(BTC)2] catalytic cycloaddition reaction was closely related to the Lewis acid/base distribution. In addition, a plausible mechanism for the synergistic effect of the catalyst (Lewis acid and base properties) and the co-catalyst was suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA