Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(18): 13773-13789, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38655720

RESUMO

In the present investigation, we present the comparison of the structural, magnetic, magnetocaloric and magnetoresistance behavior of solid state and sol-gel derived La0.7Sr0.3MnO3. X-ray diffraction together with Rietveld refinement confirms the rhombohedral structure of the synthesised samples with the R3̄c space group. The ferromagnetic-to-paramagnetic transition temperature decreases from 360 K to 346 K for the nanocrystalline sample. The XPS measurements confirm the presence of Mn3+ in the synthesised samples. Furthermore, the polycrystalline sample exhibits a considerable -ΔSM of 4.68 J kg-1 K-1 at 360 K for a field change of 50 kOe and a relative cooling power (RCP) of 205 J kg-1. A -ΔSM of 1.14 J kg-1 K-1 was obtained for the nanocrystalline sample at 346 K with an RCP of 83 J kg-1. Critical exponent analysis has also been performed on both samples to establish the universality class. Both samples exhibit a distinct metal-to-insulator transition, which increases with grain size from 187 K to 334 K as a result of grain growth and decreased grain boundary. As the grain size increases, the resistivity decreases and shifts towards high temperatures with increasing magnetic fields. The itinerant electron model (IEO) which is based on the hopping of O 2p itinerant electrons has been used to explain the resistivity behaviour of the samples. It is found that the negative magnetoresistance also increases with a decrease in grain size where the highest %MR of 26% can be observed for the nanocrystalline sample. These results make La0.7Sr0.3MnO3 a suitable candidate for multifunctional applications.

2.
Phys Chem Chem Phys ; 21(24): 12991-13004, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31165820

RESUMO

We have carried out a detailed study of the morphological, structural, optical and magnetic properties of Cr doped TiO2 nanocrystals with doping concentrations varying from 3 to 12 atomic weight%. The results obtained from transmission electron microscopy analysis, size-strain plots of all the Cr-doped samples and crystallite size estimation reveal the particle size of the prepared nanocrystals to be well below 10 nm, which is observed to exhibit a decreasing trend with an increase in the Cr dopant concentration. All the samples crystallize in the anatase tetragonal phase of TiO2, which is confirmed from the Rietveld refinement of the X-ray diffraction patterns and the different modes present in the Raman spectra. The Eg(1) mode shows a clear red shift and broadening with increase in the Cr concentration, which indicates the replacement of Ti ions with Cr ions in the TiO2 lattice. The possibility of the presence of different functional groups present is verified by Fourier transform infra-red spectroscopy. The presence of Cr3+ and Ti4+ is confirmed from the X-ray photoelectron spectroscopy (XPS) results suggesting the formation of oxygen vacancies to compensate for the charge neutrality. The XPS results validate the Cr3+ existence in the Cr:TiO2 system and corroborate with a slight peak shift towards lower diffraction angle and further confirm the substitutional doping in the present case. Enhanced visible range optical absorption and a clear red shift associated with the absorption edge also suggest the incorporation of Cr3+ ions into the host system. The estimated band-gap of Cr-doped TiO2 nanocrystals reveals a decreasing trend with increasing Cr concentration. The Urbach energy associated with all the Cr-doped samples signifies the presence of oxygen vacancy related defects in the present system, which is further verified using photoluminescence (PL) spectra, and the deconvolution of the PL spectra provides an insight into the oxygen vacancy defects associated with the system. Paramagnetic (PM) behaviour is observed with an increase in the PM moment, suggesting the increase in isolated Cr ions with increase in the Cr concentration, which is further explained using a bound magnetic polaron (BMP) model. Isolated BMP formation could be the reason for the observed PM behavior of the present system, where the trapping of 3d electrons associated with Cr3+ in the vacancy sites could ultimately lead to fewer overlapped BMPs, yielding a net PM moment. The present Cr:TiO2 system could be modified with tailored optical and magnetic properties for functional applications such as magneto-optics and optoelectronic devices.

3.
Phys Chem Chem Phys ; 21(5): 2519-2532, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30656347

RESUMO

Dilute magnetic semiconductors based on TiO2 nanocrystals are the most promising class of materials exhibiting unique optical and magnetic properties. In the present investigation, we have performed a systematic study on the structural, morphological, optical and magnetic behavior of Ni-doped TiO2, synthesized via a simple, cost-effective sol-gel route. X-ray diffraction patterns together with Raman spectra confirmed the tetragonal anatase phase of Ni-doped TiO2. High-resolution transmission electron microscopy images indicated the formation of highly crystalline nanocrystals, and the compositional homogeneity of all the samples was confirmed from energy dispersive X-ray fluorescence spectroscopic studies. The functional groups in the samples were identified by Fourier transform infrared spectroscopy. UV-visible and photoluminescence (PL) spectroscopy were performed to provide an insight into the band-gap narrowing in the Ni-doped TiO2 nanocrystals. X-ray photoelectron spectroscopy results signified the existence of Ti4+ and Ni2+ in all the prepared samples. A decrease in coercivity was observed with Ni substitution, and at lower Ni concentration, the magnetic behavior was attributed to the bound magnetic polarons associated with the oxygen vacancy defects arising during the synthesis procedure. PL analysis revealed the presence of defects in the system and Langevin fitting was employed to estimate the concentration of bound magnetic polarons arising as a result of these defects. The band-gap narrowing and the enhanced magnetic moment observed in Ni-doped TiO2 reveal the potential of this semiconductor for advanced functional applications such as magneto-optics and spintronics.

4.
RSC Adv ; 9(41): 23598-23606, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35530575

RESUMO

The effect of Sr-site deficiency on the structural, magnetic and magnetic entropy change of La0.67Sr0.33-yMnO3-δ (y = 0.18 and 0.27) compounds was investigated. The compounds were prepared by the conventional solid-state route and powder X-ray diffraction technique along with Rietveld refinement was carried out to confirm the structure and phase purity. Lattice parameters and unit cell volumes are found to increase with the increase in Sr-deficiency due to the electrostatic repulsion from the neighbouring oxygen ions. A mixed valence state of Mn2+/Mn3+/Mn4+ was confirmed using the X-ray photoelectron spectroscopy technique and it was observed that the change of state from Mn3+ + Mn3+ pairs to Mn2+ + Mn4+ pairs is different for both the studied compounds. A second order ferromagnetic-paramagnetic transition with an enhancement in magnetization in comparison to the pristine compound (La0.67Sr0.33MnO3) was observed due to multiple double exchange interactions. The La0.67Sr0.15□0.18MnO3-δ compound exhibits a magnetic entropy change (ΔS M) of 4.61 J kg-1 K-1 at 310 K, and the La0.67Sr0.06□0.27MnO3-δ compound exhibits a ΔS M of 4.11 J kg-1 K-1 at 276 K under a field of 50 kOe. In our previous work, we reported a large value of ΔS M but at higher temperatures, around 350 K. However, in the present case, we have achieved a near room temperature (310 K) MCE with a significant ΔS M value (4.61 J kg-1 K-1) which is larger than that reported for numerous perovskite manganites. Thus, the studied material could be a potential candidate for room temperature magnetic refrigeration applications.

5.
Dalton Trans ; 47(43): 15512-15522, 2018 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-30338325

RESUMO

In this paper, we have studied the effect on the structural, magnetic and magnetocaloric properties of La and Sr-deficiencies in the La0.67Sr0.33MnO3 compound. Rietveld refinement of the X-ray powder diffraction patterns confirms that all of the compounds have crystallized into a rhombohedral crystal symmetry with an R3[combining macron]c space group. X-ray photoelectron spectroscopy measurements revealed that the parent compound has a mixed valance of Mn3+/Mn4+, whereas Mn2+/Mn3+/Mn4+ mixed valency is found in the case of both La and Sr-deficient compounds. The La0.67Sr0.33MnO3 compound shows a magnetic transition temperature of 365 K, while the La and Sr-deficient compounds exhibit transition temperatures of 367 K and 355 K, respectively. Among the studied compounds, the Sr-deficient compound shows the highest magnetic entropy change (ΔSM) of 5.08 J kg-1 K-1 at 352 K for a 50 kOe field with a relative cooling power (RCP) of 142 J kg-1 and an adiabatic temperature change of 3.48 K, while the parent and La-deficient compounds exhibit a -ΔSM of 4.78 J kg-1 K-1 at 364 K and of 4.12 J kg-1 K-1 at 364 K, respectively. The temperature dependence of the electrical resistivity with and without applied magnetic fields reveals that the La-deficient compound has one order and the Sr-deficient compound has two orders of suppression in the electrical resistivity. Thus, the Sr-deficient compound shows promising behaviour for reduction of the magnetic transition temperature towards room temperature, along with an increase in the ΔSM values, and enhancement in the electrical conductivity. Therefore, it could be possible to tune the transition temperature towards room temperature without compromising the magnetic entropy change in order to develop materials for magnetic refrigeration applications.

6.
RSC Adv ; 8(73): 41994-42008, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35558798

RESUMO

Oxide based dilute magnetic semiconductor materials have been of great interest over the years due to their potential use in spintronic devices. However, the variations in the magnetic behavior of the materials have raised concerns regarding the origin of ferromagnetic properties which still needs to be explored. Manipulation of magnetic behavior in oxide based dilute magnetic semiconductors has become a challenge due to the interplay of intrinsic defects present in the material. TiO2 nanocrystals have been studied largely due to their challenging optical and magnetic properties. The present investigation studies in detail the structural, morphological, optical and magnetic behavior of non-magnetic element (Cu and Zn) doped TiO2, synthesized via a simple sol-gel technique. X-ray diffraction patterns and Raman spectra confirm the anatase phase and high resolution transmission electron microscopic results clearly indicate the formation of highly crystalline nanocrystals in all the samples with particle size ranging from 5-15 nm. Energy dispersive X-ray fluorescence spectroscopic studies reveal the compositional homogeneity of all the investigated samples. The presence of functional groups and molecular interactions were identified by Fourier transform infrared spectroscopy. Optical properties were studied through UV-visible and photoluminescence spectroscopy from which a significant reduction in band gap in Cu-doped TiO2 nanocrystals was found. X-ray photoelectron spectra confirm the presence of Ti3+, Cu2+, Cu+ and Zn2+ in Cu and Zn-doped TiO2 samples. The concept of bound magnetic polarons associated with the vacancy defects at both Ti, Cu, Zn and oxygen sites is used to explain the induced weak ferromagnetic behavior in undoped, Cu and Zn-doped TiO2 at room temperature. The overlapping of bound magnetic polarons could be the source of ferromagnetism irrespective of the non-magnetic nature of the dopant ion. The concentration of bound magnetic polarons is estimated using a Langevin fit and a detailed understanding of the variation of defect mediated magnetic properties is established with the help of PL analysis. A significant reduction in bandgap along with enhanced magnetization observed in the Cu-doped TiO2 material makes it suitable as a potential candidate for spintronics and magneto-optics applications. Room temperature magnetic properties of the Zn doped sample show a diamagnetic tail which is explained based on the defect centers and oxidation states of dopant ions present in the sample which is further verified with the help of XPS results.

7.
Inorg Chem ; 56(11): 6264-6274, 2017 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-28489353

RESUMO

Here, we report a simple, cost-effective, surfactant-assisted, and aqueous-based low-temperature reflux method for the synthesis of Bi2Te3 nanocrystals. Thermoelectric properties of n-type bismuth telluride (BT) nanostructures are reported by varying the morphology and crystal structure. Tuning the reaction time from 1 to 36 h enables the phase transformation from BiTe with a hexagonal crystal structure to Bi2Te3 with a rhombohedral crystal structure, which is evident from the refined X-ray diffraction results and high-resolution transmission electron microscopy analysis. A perfect stoichiometric balance is achieved for all the compositions, and temperature variation of the electrical resistivity of all BT nanostructures shows the typical metal to semiconducting transition near room temperature. Seebeck coefficient and Hall measurements confirm electrons as the majority carriers and show the typical characteristics of n-type BT nanostructures. The nanocrystals inherited from the optimized reaction conditions and high densification of nanoparticle interfaces contribute to the considerable reduction of thermal conductivity in BT nanostructures. Highly crystalline, uniformly distributed nanocrystals of Bi2Te3 formed for 24 h reaction time demonstrate a promising figure of merit of 0.81 at 350 K, which can be attributed to their low thermal conductivity while the high electrical conductivity is maintained. Our research could provide new possibilities in low-temperature synthesis where structural, compositional, and morphological tuning of BT nanostructures could promote practical thermoelectric applications near room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA