Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Pathogens ; 13(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392842

RESUMO

Protein synthesis has been a very rich target for developing drugs to control prokaryotic and eukaryotic pathogens. Despite the development of new drug formulations, treating human cutaneous and visceral Leishmaniasis still needs significant improvements due to the considerable side effects and low adherence associated with the current treatment regimen. In this work, we show that the di-substituted urea-derived compounds I-17 and 3m are effective in inhibiting the promastigote growth of different Leishmania species and reducing the macrophage intracellular load of amastigotes of the Leishmania (L.) amazonensis and L. major species, in addition to exhibiting low macrophage cytotoxicity. We also show a potential immunomodulatory effect of I-17 and 3m in infected macrophages, which exhibited increased expression of inducible Nitric Oxide Synthase (NOS2) and production of Nitric Oxide (NO). Our data indicate that I-17, 3m, and their analogs may be helpful in developing new drugs for treating leishmaniasis.

2.
Int J Mol Sci ; 19(11)2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-30424508

RESUMO

Interleukin 24 (IL-24) is a tumor-suppressing protein, which inhibits angiogenesis and induces cancer cell-specific apoptosis. We have shown that IL-24 regulates apoptosis through phosphorylated eukaryotic initiation factor 2 alpha (eIF2α) during endoplasmic reticulum (ER) stress in cancer. Although multiple stresses converge on eIF2α phosphorylation, the cellular outcome is not always the same. In particular, ER stress-induced apoptosis is primarily regulated through the extent of eIF2α phosphorylation and activating transcription factor 4 (ATF4) action. Our studies show for the first time that cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) activation is required for IL-24-induced cell death in a variety of breast cancer cell lines and this event increases ATF4 activity. We demonstrate an undocumented role for PKA in regulating IL-24-induced cell death, whereby PKA stimulates phosphorylation of p38 mitogen-activated protein kinase and upregulates extrinsic apoptotic factors of the Fas/FasL signaling pathway and death receptor 4 expression. We also demonstrate that phosphorylation and nuclear import of tumor suppressor TP53 occurs downstream of IL-24-mediated PKA activation. These discoveries provide the first mechanistic insights into the function of PKA as a key regulator of the extrinsic pathway, ER stress, and TP53 activation triggered by IL-24.


Assuntos
Apoptose , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Interleucinas/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo
3.
Cancers (Basel) ; 10(5)2018 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-29786657

RESUMO

Dysregulated activity of helicase eIF4A drives transformation to and maintenance of cancer cell phenotype by reprogramming cellular translation. Interleukin 24 (IL-24) is a tumor-suppressing protein, which has the ability to inhibit angiogenesis, sensitize cancer cells to chemotherapy, and induce cancer cell-specific apoptosis. In this study, we found that eIF4A is inhibited by IL-24. Consequently, selective reduction of translation was observed for mRNAs harboring strong secondary structures in their 5'-untranslated regions (5'UTRs). These mRNAs encode proteins, which function in cell survival and proliferation. Consistently, overexpression of eIF4A conferred cancer cells with resistance to IL-24-induced cell death. It has been established that inhibition of eIF4A triggers mitochondrial-mediated apoptosis. We showed that IL-24 induces eIF4A-dependent mitochondrial depolarization. We also showed that IL-24 induces Sigma 1 Receptor-dependent eIF4A down-regulation and mitochondrial depolarization. Thus, the progress of apoptosis triggered by IL-24 is characterized by a complex program of changes in regulation of several initiation factors, including the eIF4A.

4.
Sci Rep ; 8(1): 4857, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29559670

RESUMO

Some 1,3-diarylureas and 1-((1,4-trans)-4-aryloxycyclohexyl)-3-arylureas (cHAUs) activate heme-regulated kinase causing protein synthesis inhibition via phosphorylation of the eukaryotic translation initiation factor 2 (eIF2) in mammalian cancer cells. To evaluate if these agents have potential to inhibit trypanosome multiplication by also affecting the phosphorylation of eIF2 alpha subunit (eIF2α), we tested 25 analogs of 1,3-diarylureas and cHAUs against Trypanosoma cruzi, the agent of Chagas disease. One of them (I-17) presented selectivity close to 10-fold against the insect replicative forms and also inhibited the multiplication of T. cruzi inside mammalian cells with an EC50 of 1-3 µM and a selectivity of 17-fold. I-17 also prevented replication of African trypanosomes (Trypanosoma brucei bloodstream and procyclic forms) at similar doses. It caused changes in the T. cruzi morphology, arrested parasite cell cycle in G1 phase, and promoted phosphorylation of eIF2α with a robust decrease in ribosome association with mRNA. The activity against T. brucei also implicates eIF2α phosphorylation, as replacement of WT-eIF2α with a non-phosphorylatable eIF2α, or knocking down eIF2 protein kinase-3 by RNAi increased resistance to I-17. Therefore, we demonstrate that eIF2α phosphorylation can be engaged to develop trypanosome-static agents in general, and particularly by interfering with activity of eIF2 kinases.


Assuntos
Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/metabolismo , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo , Ureia/metabolismo , Ureia/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doença de Chagas/microbiologia , Fator de Iniciação 2 em Eucariotos/metabolismo , Fase G1/efeitos dos fármacos , Heme/metabolismo , Humanos , Mioblastos/efeitos dos fármacos , Mioblastos/parasitologia , Testes de Sensibilidade Parasitária , Fosforilação , Ratos , Ureia/análogos & derivados , eIF-2 Quinase/metabolismo
5.
Mol Cancer Res ; 15(8): 1117-1124, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28461326

RESUMO

IL24 is an immunomodulatory cytokine that also displays broad cancer-specific suppressor effects. The tumor-suppressor activities of IL24 include inhibition of angiogenesis, sensitization to chemotherapy, and cancer-specific apoptosis. Supra-physiologic activation and/or overexpression of translation initiation factors are implicated in the initiation and progression of cancer animal models as well as a subset of human cancers. Activation and/or overexpression of translation initiation factors correlate with aggressiveness of cancer and poor prognosis. Two rate-limiting translation initiation complexes, the ternary complex and the eIF4F complex, are regulated by eIF2α and 4E-BP1 phosphorylation, respectively. The work reported here provides direct evidence that IL24 induces inhibition of translation initiation leading to apoptosis in squamous cell carcinoma. A dominant constitutively active mutant of eIF2α, which is resistant to phosphorylation, was used to determine the involvement of eIF2α in IL24-induced apoptosis. Treatment with IL24 resulted in inhibition of protein synthesis, expression of downstream biomarkers of ternary complex depletion such as CHOP, and induction of apoptosis in cancer cells. The constitutively active nonphosphorylatable mutant of eIF2α, eIF2α-S51A, reversed both the IL24-mediated translational block and IL24-induced apoptosis. Intriguingly, IL24 treatment also caused hypophosphorylation of 4E-BP1, which binds to eIF4E with high affinity, thus preventing its association with eIF4G and therefore preventing elF4F complex assembly.Implications: These results demonstrate a previously unrecognized role of IL24 in inhibition of translation, mediated through both phosphorylation of eIF2α and dephosphorylation of 4E-BP1, and provide the first direct evidence for translation control of gene-specific expression by IL24. Mol Cancer Res; 15(8); 1117-24. ©2017 AACR.


Assuntos
Carcinoma de Células Escamosas/genética , Fator de Iniciação 2 em Eucariotos/genética , Interleucinas/genética , Neovascularização Patológica/genética , Biossíntese de Proteínas , Proteínas Adaptadoras de Transdução de Sinal/genética , Apoptose/genética , Carcinoma de Células Escamosas/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Fator de Iniciação 4F em Eucariotos/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neovascularização Patológica/patologia , Fosfoproteínas/genética , Fosforilação , Transdução de Sinais/genética
6.
FASEB J ; 30(4): 1557-65, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26678450

RESUMO

Endoplasmic reticulum (ER) stress triggers the integrated ER-stress response (IERSR) that ensures cellular survival of ER stress and represents a primordial form of innate immunity. We investigated the role of IERSR duringLeishmania amazonensisinfection. Treatment of RAW 264.7 infected macrophages with the ER stress-inducing agent thapsigargin (TG; 1 µM) increasedL. amazonensisinfectivity in an IFN1-α receptor (IFNAR)-dependent manner. In Western blot assays, we showed thatL. amazonensisactivates the inositol-requiring enzyme (IRE1)/ X-box binding protein (XBP)-1-splicing arms of the IERSR in host cells. In chromatin immunoprecipitation (ChIP) assays, we showed an increased occupancy of enhancer and promoter sequences for theIfnbgene by XBP1 in infected RAW 264.7 cells. Knocking down XBP1 expression by transducing RAW 264.7 cells with the short hairpin XBP1 lentiviral vector significantly reduced the parasite proliferation associated with impaired translocation of phosphorylated IFN regulatory transcription factor (IRF)-3 to the nucleus and a decrease in IFN1-ß expression. Knocking down XBP1 expression also increased NO concentration, as determined by Griess reaction and reduced the expression of antioxidant genes, such as heme oxygenase (HO)-1, that protect parasites from oxidative stress. We conclude thatL. amazonensisactivation of XBP1 plays a critical role in infection by protecting the parasites from oxidative stress and increasing IFN1-ß expression.-Dias-Teixeira, K. L., Calegari-Silva, T. C., Dos Santos, G. R. R. M., Vitorino dos Santos, J., Lima, C., Medina, J. M., Aktas, B. H., Lopes, U. G. The integrated endoplasmic reticulum stress response inLeishmania amazonensismacrophage infection: the role of X-box binding protein 1 transcription factor.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Estresse do Retículo Endoplasmático , Leishmania/fisiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Fatores de Transcrição/metabolismo , Animais , Western Blotting , Linhagem Celular , Proteínas de Ligação a DNA/genética , Expressão Gênica , Células HEK293 , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Interações Hospedeiro-Parasita , Humanos , Interferon beta/genética , Interferon beta/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Regiões Promotoras Genéticas/genética , Ligação Proteica , Interferência de RNA , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição de Fator Regulador X , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tapsigargina/farmacologia , Fatores de Transcrição/genética , Proteína 1 de Ligação a X-Box
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA