Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
ACS Energy Lett ; 8(12): 5170-5174, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38094751

RESUMO

We show for the first time DMSO-free tin-based perovskite solar cells with a self-assembled hole selective contact (MeO-2PACz). Our method provides reproducible and hysteresis-free devices with MeO-2PACz, having the best device PCE of 5.8 % with a VOC of 638 mV.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38041636

RESUMO

Current improvement in perovskite solar cells (PSCs) has been achieved by interface engineering and fine-tuning of charge-selective contacts. In this work, we report three novel molecules that can form self-assembled layers (SAMs) as an alternative to the most commonly used p-type contact material, PTAA. Two of these molecules have bidentate anchoring groups (MC-54 and MC-55), while the last one is monodentate (MC-45). Besides the PTAA comparison, we also compared those two types of molecules and their effect on the solar cell's performance. Devices fabricated with MC-54 and MC-55 showed a remarkable field factor (about 80%) and a better current density, leading to higher efficient solar cells in comparison to MC-45 and PTAA. Moreover, mono- and bidentate present higher stability and reproducibility in comparison to PTAA.

4.
Nanoscale Adv ; 5(23): 6542-6547, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-38024303

RESUMO

The use of self-assembled molecules (SAMs) as hole transport materials (HTMs) in p-i-n perovskite solar cells (iPSCs) has triggered widespread research due to their relatively easy synthetic methods, suitable energy level alignment with the perovskite material and the suppression of chemical defects. Herein, three new SAMs have been designed and synthesised based on a carbazole core moiety and modified functional groups through an efficient synthetic protocol. The SAMs have been used to understand the SAM/perovskite interface interactions and establish the relationship between the SAM molecular structure and the resulting performance of the perovskite-based devices. The best devices show efficiencies ranging from 18.9% to 17.5% under standard illumination conditions, which are very close to that of our benchmark EADR03, which has been recently commercialised. Our work aims to provide knowledge on the structure of the molecules versus device function relationship.

5.
ACS Energy Lett ; 8(9): 3876-3882, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705702

RESUMO

Halide alloying in tin-based perovskites allows for photostable bandgap tuning between 1.3 and 2.2 eV. Here, we elucidate how the band edge energetics and associated defect activity impact the optoelectronic properties of this class of materials. We find that by increasing the bromide:iodide ratio, a simultaneous destabilization of acceptor defects (tin vacancies and iodine interstitials) and stabilization of donor defects (iodine vacancies and tin interstitials) occurs, with strong changes arising for Br contents exceeding 50%. This translates into a decreased doping which is, however, accompanied by a higher density of nonradiative recombination channels. Films with high Br content show a high degree of disorder and trap state densities, with the best optoelectronic quality being found for Br contents of around 33%. These observations match the open circuit voltage trend of tin-based mixed halide perovskite solar cells, supporting the relevance of optoelectronic properties and chemistry of defects to optimize wide-bandgap tin perovskite devices.

6.
Angew Chem Int Ed Engl ; 62(39): e202307395, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37522562

RESUMO

Stability issues could prevent lead halide perovskite solar cells (PSCs) from commercialization despite it having a comparable power conversion efficiency (PCE) to silicon solar cells. Overcoming drawbacks affecting their long-term stability is gaining incremental importance. Excess lead iodide (PbI2 ) causes perovskite degradation, although it aids in crystal growth and defect passivation. Herein, we synthesized functionalized oxo-graphene nanosheets (Dec-oxoG NSs) to effectively manage the excess PbI2 . Dec-oxoG NSs provide anchoring sites to bind the excess PbI2 and passivate perovskite grain boundaries, thereby reducing charge recombination loss and significantly boosting the extraction of free electrons. The inclusion of Dec-oxoG NSs leads to a PCE of 23.7 % in inverted (p-i-n) PSCs. The devices retain 93.8 % of their initial efficiency after 1,000 hours of tracking at maximum power points under continuous one-sun illumination and exhibit high stability under thermal and ambient conditions.

7.
ACS Energy Lett ; 8(6): 2801-2808, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37324539

RESUMO

Bandgap tuning is a crucial characteristic of metal-halide perovskites, with benchmark lead-iodide compounds having a bandgap of 1.6 eV. To increase the bandgap up to 2.0 eV, a straightforward strategy is to partially substitute iodide with bromide in so-called mixed-halide lead perovskites. Such compounds are prone, however, to light-induced halide segregation resulting in bandgap instability, which limits their application in tandem solar cells and a variety of optoelectronic devices. Crystallinity improvement and surface passivation strategies can effectively slow down, but not completely stop, such light-induced instability. Here we identify the defects and the intragap electronic states that trigger the material transformation and bandgap shift. Based on such knowledge, we engineer the perovskite band edge energetics by replacing lead with tin and radically deactivate the photoactivity of such defects. This leads to metal halide perovskites with a photostable bandgap over a wide spectral range and associated solar cells with photostable open circuit voltages.

8.
Mater Adv ; 3(24): 9083-9089, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36545323

RESUMO

Metal halide perovskites are set to revolutionise photovoltaic energy harvesting owing to an unmatched combination of high efficiency and low fabrication costs. However, to improve the sustainability of this technology, replacing lead with less toxic tin is highly desired. Tin halide perovskites are approaching 15% in power conversion efficiency (PCE), mainly employing PEDOT:PSS as a hole-selective layer. Unfortunately, PEDOT:PSS is processed from an aqueous solution, which is hardly compatible with the strict anoxic requirements for processing tin halide perovskites due to tin's instability to oxidation. Here, we present a water-free PEDOT formulation for developing tin-based lead-free perovskite solar cells. We show that the main difference between the PCE of devices made from aqueous and water-free PEDOT is due to the marked hydrophobicity of the latter, which complicates the perovskite deposition. By modifying the surface of water-free PEDOT with a thin Al2O3 interlayer, we could achieve good perovskite morphology that enabled perovskite solar cells with a PCE of 7.5%.

9.
ACS Energy Lett ; 7(10): 3197-3203, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277134

RESUMO

Controlling the crystallization of perovskite in a thin film is essential in making solar cells. Processing tin-based perovskite films from solution is challenging because of the uncontrollable faster crystallization of tin than the most used lead perovskite. The best performing devices are prepared by depositing perovskite from dimethyl sulfoxide because it slows down the assembly of the tin-iodine network that forms perovskite. However, while dimethyl sulfoxide seems the best solution to control the crystallization, it oxidizes tin during processing. This work demonstrates that 4-(tert-butyl) pyridine can replace dimethyl sulfoxide to control the crystallization without oxidizing tin. We show that tin perovskite films deposited from pyridine have a 1 order of magnitude lower defect density, which promotes charge mobility and photovoltaic performance.

10.
ACS Appl Mater Interfaces ; 14(15): 17461-17469, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35385253

RESUMO

The application of self-assembled molecules (SAMs) as a charge selective layer in perovskite solar cells has gained tremendous attention. As a result, highly efficient and stable devices have been released with stand-alone SAMs binding ITO substrates. However, further structural understanding of the effect of SAM in perovskite solar cells (PSCs) is required. Herein, three triphenylamine-based molecules with differently positioned methoxy substituents have been synthesized that can self-assemble onto the metal oxide layers that selectively extract holes. They have been effectively employed in p-i-n PSCs with a power conversion efficiency of up to 20%. We found that the perovskite deposited onto SAMs made by para- and ortho-substituted hole selective contacts provides large grain thin film formation increasing the power conversion efficiencies. Density functional theory predicts that para- and ortho-substituted position SAMs might form a well-ordered structure by improving the SAM's arrangement and in consequence enhancing its stability on the metal oxide surface. We believe this result will be a benchmark for the design of further SAMs.

11.
Nanoscale Horiz ; 5(10): 1415-1419, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32856637

RESUMO

The use of self-assembled monolayers (SAMs) as selective charge extracting layers in perovskite solar cells is a great approach to replace the commonly used charge selective contacts, as they can easily modify the interface to enhance the final solar cell performance. Here, we report a novel synthetic approach of the commonly known zinc phtalocyanine (ZnPc) molecule TT1, widely employed in dye-sensitized solar cells and previously used in perovskite solar cells. TT1 is used as a p-type selective contact, and it demonstrates its ability to form SAM on top of the indium tin oxide (ITO) transparent electrode, obtaining higher efficiencies compared to Pedot:PSS based perovskite solar cells. The differences observed, with an enhanced open-circuit voltage and overall efficiency in TT1 devices are correlated with differences in energetics rather than recombination kinetics.

12.
Chemphyschem ; 20(20): 2702-2711, 2019 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30957930

RESUMO

Truxene derivatives, due to their molecular structure and properties, are good candidates for the passivation of defects when deposited onto hybrid lead halide perovskite thin films. Moreover, their semiconductor characteristics can be tailored through the modification of their chemical structure, which allows-upon light irradiation- the interfacial charge transfer between the perovskite film and the truxene molecules. In this work, we analysed the use of the molecules as surface passivation agents and their use in complete functional solar cells. We observed that these molecules reduce the non-radiative carrier recombination dynamics in the perovskite thin film through the supramolecular complex formation between the Truxene molecule and the Pb2+ defects at the perovskite surface. Interestingly, this supramolecular complexation neither affect the carrier recombination kinetics nor the carriers collection but induced noticeable hysteresis on the photocurrent vs voltage curves of the solar cells under 1 sun illumination.

13.
Talanta ; 119: 447-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24401439

RESUMO

A multi-walled carbon nanotubes-polypyrrole conducting polymer nanocomposite has been synthesized, characterized and used for the separation and preconcentration of lead at trace levels in water samples prior to its flame atomic absorption spectrometric detection. The analytical parameters like pH, sample volume, eluent, sample flow rate that were affected the retentions of lead(II) on the new nanocomposite were optimized. Matrix effects were also investigated. Limit of detection and preconcentration factors were 1.1 µg L(-1) and 200, respectively. The adsorption capacity of the nanocomposite was 25.0mg lead(II) per gram composite. The validation of the method was checked by using SPS-WW2 Waste water Level 2 certified reference material. The method was applied to the determination of lead in water samples with satisfactory results.


Assuntos
Chumbo/análise , Nanotubos de Carbono , Polímeros/química , Pirróis/química , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise , Adsorção , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA