Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanoscale ; 16(2): 719-733, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38086662

RESUMO

This research paper investigates the effect of functionalizing the surfaces of citric acid-synthesized carbon dots (CDs) with hyperbranched bis(methylol)propionic acid (bis-MPA) polyester hydroxyl polymers (HBPs) on their performance as electrode materials in a supercapacitor. Two types of HBPs with 16 and 64 peripheral hydroxyl groups were used to functionalize the CDs' oxygen-enriched surface. Here, CDs were used as electrode materials for the first time in symmetric supercapacitors without a composite material, and how surface modification affects the capacitance performance of CDs was investigated. Our results showed that the functionalization of green-emitting CDs with HBP resulted in the successful passivation of surface defects, which improved their stability and prevented further oxidation. The CDs with HBP passivation exhibited excellent electrochemical performance, with a high specific capacitance of 32.08 F g-1 at 0.1 A g-1 and good rate capability, indicating a faster ion transport rate at high current densities. Experimental EPR spectra of functionalized and non-functionalized CDs reveal distinct changes in g-factor values and line widths, confirming the impact of dangling bonds and spin-orbit interactions. The observed broader linewidth indicates a wider range of electron spin resonances due to energy-level splitting induced by spin-orbit coupling. The excellent electrochemical performance of CDs with HBP passivation can be attributed to the presence of oxygen-containing surface functional groups such as hydroxyl and carboxyl groups on their surfaces, which enhance the conductivity and charge transfer reactions. These results suggest that functionalization with polar HBPs is a promising strategy to enhance the electrochemical performance of CDs in supercapacitor applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA