Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; 16(21): e202300730, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37485991

RESUMO

Improving the energy share of renewable energy technologies is the only solution to reduce greenhouse gas emissions and air pollution. The high-performing green battery energy storage technologies are critical for storing energy to address the intermittent nature of renewable energy resources. In recent years, aqueous batteries, particularly Zn-ion batteries (ZIBs), have achieved and shown great potential for stationary energy storage systems owing to their low cost and safer operation. However, the practical applications of the ZIBs have significantly been impeded due to the gap between the breakthroughs achieved in academic research and industrial developments. The present review discusses the ZIB's advantages, possibilities, and shortcomings for stationary energy storage systems. The Review begins with a brief introduction to the ZIBs and their charge storage mechanisms based on the structural properties of cathode materials. The scientific and technical challenges that obstruct the commercialization of the ZIBs are discussed in detail concerning their impact on accelerating the utilization of the ZIBs for real-life applications. The final section highlights the outlook on research in this flourishing field.

2.
Nanotechnology ; 32(47)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34388743

RESUMO

Focused ion beam (FIB) technology has become a promising technique in micro- and nano-prototyping due to several advantages over its counterparts such as direct (maskless) processing, sub-10 nm feature size, and high reproducibility. Moreover, FIB machining can be effectively implemented on both conventional planar substrates and unconventional curved surfaces such as optical fibers, which are popular as an effective medium for telecommunications. Optical fibers have also been widely used as intrinsically light-coupled substrates to create a wide variety of compact fiber-optic devices by FIB milling diverse micro- and nanostructures onto the fiber surface (endfacet or outer cladding). In this paper, the broad applications of the FIB technology in optical fibers are reviewed. After an introduction to the technology, incorporating the FIB system and its basic operating modes, a brief overview of the lab-on-fiber technology is presented. Furthermore, the typical and most recent applications of the FIB machining in optical fibers for various applications are summarized. Finally, the reviewed work is concluded by suggesting the possible future directions for improving the micro- and nanomachining capabilities of the FIB technology in optical fibers.

3.
Environ Sci Pollut Res Int ; 25(23): 23091-23105, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29860688

RESUMO

Modified Hummer's method has been used in this study to synthesize graphene oxide (GO) solution that was utilized for the fabrication of three-dimensional (3D) graphene sponges and their subsequent functionalization through a low-cost and facile vapor-based surface enhancement approach. The functionalized 3D-graphene sponge is an excellent absorbent, which can remove more than 3300 wt.% of crude oil (calculated with respect to the original sorbent mass). The functionalization of the obtained graphene sponges with trichloro (1H,1H,2H,2H-perfluorooctyl)silane enhanced their wettability properties due to the super-hydrophobic nature of the resulting materials characterized by the contact angles in water greater than 150°. Furthermore, their elastic compression modulus (estimated by conducting a series of compression tests) was about 22.3 kPa. The equilibrium modeling of the oil removal process, which was performed by plotting Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms, confirmed the properties of the fabricated 3D graphene sponges as exceptional absorbents for crude and diesel oil, which could be attributed to the oleophilic nature of graphene. Moreover, the obtained 3D graphene sponges could be regenerated via heat treatment, which was conducted to release the adsorbed species. After five adsorption-desorption cycles, the sorption capacity of the produced 3D graphene sponges towards crude oil reached 95% of the initial value.


Assuntos
Recuperação e Remediação Ambiental/métodos , Gasolina/análise , Grafite/química , Poluição por Petróleo/prevenção & controle , Petróleo/análise , Adsorção , Recuperação e Remediação Ambiental/instrumentação , Modelos Químicos
4.
J Nanosci Nanotechnol ; 17(1): 405-12, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-29624036

RESUMO

In this paper, a new type of sensor and associated system for complete online monitoring of scale deposition with great accuracy and reliability is fabricated and characterized. The system is based on carbon nanotubes (CNTs), which have unique sensing/electronic properties along with physical and chemical stability in corrosive and hostile environments required for the oil and gas application. CNTs inkjet printing technique is used to fabricate the CNTs sensor. The sensitivity of the films, real time monitoring of brine solution, stability of the films in various solvents and fluids and the ability of setting and resetting of the sensor are studied. The results of these studies indicate that adding of one brine solution on the surface of the CNTs inkjet printing increases the resistance from 0.50 kΩ to 1.50 kΩ. The CNTs inkjet printing sample is found to be stable even after 48 hours of soaking the whole sample in DI-water. This sensor not only shows good sensing response for detection of the deposition of brine, but can also be easily reset back many times by just wash it with DI-water. This simple sensor is ideally suited for real time monitoring and the response time of the film is found to be from 15­30 s.

5.
Molecules ; 21(9)2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27598112

RESUMO

The electrical behaviour of organic memory structures, based on single-walled carbon-nanotubes (SWCNTs), metal-insulator-semiconductor (MIS) and thin film transistor (TFT) structures, using poly(methyl methacrylate) (PMMA) as the gate dielectric, are reported. The drain and source electrodes were fabricated by evaporating 50 nm gold, and the gate electrode was made from 50 nm-evaporated aluminium on a clean glass substrate. Thin films of SWCNTs, embedded within the insulating layer, were used as the floating gate. SWCNTs-based memory devices exhibited clear hysteresis in their electrical characteristics (capacitance-voltage (C-V) for MIS structures, as well as output and transfer characteristics for transistors). Both structures were shown to produce reliable and large memory windows by virtue of high capacity and reduced charge leakage. The hysteresis in the output and transfer characteristics, the shifts in the threshold voltage of the transfer characteristics, and the flat-band voltage shift in the MIS structures were attributed to the charging and discharging of the SWCNTs floating gate. Under an appropriate gate bias (1 s pulses), the floating gate is charged and discharged, resulting in significant threshold voltage shifts. Pulses as low as 1 V resulted in clear write and erase states.


Assuntos
Impressão Molecular/métodos , Nanotubos de Carbono/química , Eletrodos , Polimetil Metacrilato/química , Semicondutores
6.
Chem Commun (Camb) ; 51(99): 17619-22, 2015 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-26486193

RESUMO

We report a power law derived from experimental atomic force microscopy (AFM) data suggesting a nano to mesoscale transition in force-distance dependencies. Our results are in relative agreement with the Hamaker and Lifshitz theories for van der Waals forces for the larger tip radii only.

7.
Nanoscale Res Lett ; 7(1): 630, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23158381

RESUMO

During their synthesis, multi-walled carbon nanotubes can be aligned and impregnated in a polymer matrix to form an electrically conductive and flexible nanocomposite with high backing density. The material exhibits the highest reported electrical conductivity of CNT-epoxy composites (350 S/m). Here, we show how conductive atomic force microscopy can be used to study the electrical transport mechanism in order to explain the enhanced electrical properties of the composite. The high spatial resolution and versatility of the technique allows us to further decouple the two main contributions to the electrical transport: (1) the intrinsic resistance of the tube and (2) the tunneling resistance due to nanoscale gaps occurring between the epoxy-coated tubes along the composite. The results show that the material behaves as a conductive polymer, and the electrical transport is governed by electron tunneling at interconnecting CNT-polymer junctions. We also point out the theoretical formulation of the nanoscale electrical transport between the AFM tip and the sample in order to derive both the composite conductivity and the CNT intrinsic properties. The enhanced electrical properties of the composite are attributed to high degree of alignment, the CNT purity, and the large tube diameter which lead to low junction resistance. By controlling the tube diameter and using other polymers, the nanocomposite electrical conductivity can be improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA