Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomed Res Int ; 2024: 9997082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456098

RESUMO

Lyme disease caused by the Borrelia species is a growing health concern in many parts of the world. Current treatments for the disease may have side effects, and there is also a need for new therapies that can selectively target the bacteria. Pathogens responsible for Lyme disease include B. burgdorferi, B. afzelii, and B. garinii. In this study, we employed structural docking-based screening to identify potential lead-like inhibitors against the bacterium. We first identified the core essential genome fraction of the bacterium, using 37 strains. Later, we screened a library of lead-like marine microbial metabolites (n = 4730) against the arginine deiminase (ADI) protein of Borrelia garinii. This protein plays a crucial role in the survival of the bacteria, and inhibiting it can kill the bacterium. The prioritized lead compounds demonstrating favorable binding energies and interactions with the active site of ADI were then evaluated for their drug-like and pharmacokinetic parameters to assess their suitability for development as drugs. Results from molecular dynamics simulation (100 ns) and other scoring parameters suggest that the compound CMNPD18759 (common name: aureobasidin; IUPAC name: 2-[(4R,6R)-4,6-dihydroxydecanoyl]oxypropan-2-yl (3S,5R)-3,5-dihydroxydecanoate) holds promise as a potential drug candidate for the treatment of Lyme disease, caused by B. garinii. However, further experimental studies are needed to validate the efficacy and safety of this compound in vivo.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia , Doença de Lyme , Humanos , Grupo Borrelia Burgdorferi/genética , Doença de Lyme/tratamento farmacológico , Doença de Lyme/diagnóstico , Borrelia/genética
2.
J Biomol Struct Dyn ; 42(7): 3295-3306, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37279114

RESUMO

MCM7 (Minichromosome Maintenance Complex Component 7) is a component of the DNA replication licensing factor, which controls DNA replication. The MCM7 protein is linked to tumor cell proliferation and has a function in the development of several human cancers. Several types of cancer may be treated by inhibiting the protein, as it is strongly produced throughout this process. Significantly, Traditional Chinese Medicine (TCM), which has a long history of clinical adjuvant use against cancer, is rapidly gaining traction as a valuable medical resource for the development of novel cancer therapies, including immunotherapy. Therefore, the goal of the research was to find small molecular therapeutic candidates against the MCM7 protein that may be used to treat human cancers. A computational-based virtual screening of 36,000 natural TCM libraries is carried out for this goal using a molecular docking and dynamic simulation technique. Thereby, ∼8 novel potent compounds i.e., ZINC85542762, ZINC95911541, ZINC85542617, ZINC85542646, ZINC85592446, ZINC85568676, ZINC85531303, and ZINC95914464 were successfully shortlisted, each having the capacity to penetrate the cell as potent inhibitors for MCM7 to curb this disorder. These selected compounds were found to have high binding affinities compared to the reference (AGS compound) i.e. < -11.0 kcal/mol. ADMET and pharmacological properties showed that none of these 8 compounds poses any toxic property (carcinogenicity) and have anti-metastatic, and anticancer activity. Additionally, MD simulations were run to assess the compounds' stability and dynamic behavior with the MCM7 complex for about 100 ns. Finally, ZINC95914464, ZINC95911541, ZINC85568676, ZINC85592446, ZINC85531303, and ZINC85542646 are identified as highly stable within the complex throughout the 100 ns simulations. Moreover, the results of binding free energy suggested that the selected virtual hits significantly bind to the MCM7 which implied these compounds may act as a potential MCM7 inhibitor. However, in vitro testing protocols are required to further support these results. Further, assessment through various lab-based trial methods can assist with deciding the action of the compound that will give options in contrast to human cancer immunotherapy.Communicated by Ramaswamy H. Sarma.


Assuntos
Medicina Tradicional Chinesa , Neoplasias , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Ciclo Celular , Proliferação de Células , Neoplasias/tratamento farmacológico
3.
Nat Prod Res ; : 1-6, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37590004

RESUMO

Endophytic fungi are known to be a rich source for anti-infective drugs. In this study, Aptenia cordifolia associated endophytic fungi were explored for the first time. Seven isolates were identified morphologically followed by screening of these fungi by plug diffusion assay which revealed their potential activity against Staphylococcus aureus (ATCC 9144), Bacillus cereus (ATCC 14579), Serratia marcescens (ATCC 14756), Fusarium oxysporum (ATCC 48112), and Aspergillus flavus (ATCC 22546). Additionally, the crude ethyl acetate extract of the most potent three isolates in plug diffusion assay showed that Aspergillus sp. ACEFR2 was the most potent as anti-infective in disc diffusion assay; Accordingly, Aspergillus sp. ACEFR2 was investigated using phylogenetic analysis and LC-HR-ESI-MS. The phylogenetic analysis placed the strain into the Aspergillus section Niger close related to few species including A. niger. Whereas the metabolomic profiling revealed the presence of diverse pool of metabolites. Furthermore, in silico molecular docking study was carried out to predict which compounds most likely responsible for the anti-infective activity.

4.
Nutrients ; 15(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37111101

RESUMO

Probiotics are regarded as a potential source of functional foods for improving the microbiota in human gut. When consumed, these bacteria can control the metabolism of biomolecules, which has numerous positive effects on health. Our objective was to identify a probiotic putative Lactobacillus spp. from fermented sugarcane juice that can prevent α-glucosidase and α-amylase from hydrolyzing carbohydrates. Isolates from fermented sugarcane juice were subjected to biochemical, molecular characterization (16S rRNA) and assessed for probiotic traits. Cell-free supernatant (CS) and extract (CE) and also intact cells (IC) were examined for the inhibitory effect on α-glucosidase and α-amylase. CS of the strain showed the highest inhibition and was subjected to a liquid chromatography-mass spectrometry (LCMS) analysis to determine the organic acid profile. The in silico approach was employed to assess organic acid stability and comprehend enzyme inhibitors' impact. Nine isolates were retained for further investigation based on the preliminary biochemical evaluation. Limosilactobacillus spp., Levilactobacillus spp., and Lacticaseibacillus spp. were identified based on similarity > 95% in homology search (NCBI database). The strains had a higher survival rate (>98%) than gastric and intestinal fluids, also a high capacity for adhesion (hydrophobicity > 56%; aggregation > 80%; HT-29 cells > 54%; buccal epithelial cells > 54%). The hemolytic assay indicated that the isolates could be considered safe. The isolates' derivatives inhibited enzymes to varying degrees, with α-glucosidase inhibition ranging from 21 to 85% and α-amylase inhibition from 18 to 75%, respectively. The CS of RAMULAB54 was profiled for organic acid that showed the abundance of hydroxycitric acid, citric acid, and lactic acid indicating their role in the observed inhibitory effects. The in silico approach has led us to understand that hydroxycitric acid has the ability to inhibit both the enzymes (α-glucosidase and α-amylase) effectively. Inhibiting these enzymes helps moderate postprandial hyperglycemia and regulates blood glucose levels. Due to their promising antidiabetic potential, these isolates can be used to enhance intestinal health.


Assuntos
Probióticos , Saccharum , Humanos , Hipoglicemiantes/farmacologia , Lacticaseibacillus , Saccharum/genética , Saccharum/metabolismo , alfa-Glucosidases/metabolismo , RNA Ribossômico 16S/genética , alfa-Amilases
5.
J Biomol Struct Dyn ; 41(22): 13127-13137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37000926

RESUMO

Campylobacter concisus is a commensal of the human oral flora that has been allied with persistent diarrhea and inflammatory bowel disease (IBD). In children under the age of two, Campylobacter infections are common in the developing countries and have frequently been associated with mortality. They are becoming a prevalent cause of bacterial diarrhea in early adulthood in developed countries as well. The need for identifying new therapeutic targets and drugs is crucial for curbing such infections. Therefore, we identified 18 cytoplasmic potential therapeutic candidates against the type strain of C. concisus and deoxycytidine triphosphate deaminase (dCTP deaminase), involved in pyrimidine synthesis was selected for screening of peptidomimetic inhibitors (n > 30,000 peptidomimetics) against it. To the best of our knowledge, this target has not been studied for Campylobacter spp. Three potent inhibitors of this enzyme were prioritized i.e. peptidomimetic 27, 64, and 150. Dynamics simulation of 100 ns was carried out to validate findings for top-scored inhibitors along with physiology-based pharmacokinetics to estimate behavior in human body and predict dosing parameters. This verification demonstrates a first-in-human pharmacokinetic simulation for these peptidomimetics and can help enhance confidence in these peptide-like structures. Moiety 27 (IUPAC name: 5-[(3,5-dimethyl-1H-pyrazol-1-yl)methyl]-N-{[2-(2-methoxyethyl)-1-oxo-1H,2H,3H,4H-pyrrolo[1,2-a]pyrazin-3-yl]methyl}furan-2-carboxamide), 64 (IUPAC name: 3-(2-methylpropyl)-1-{3-[5-(5-oxo-1-phenylpyrrolidin-3-yl)-1,2,4-oxadiazol-3-yl]phenyl}urea), and 150 (IUPAC name: N-(3-methoxypropyl)-1-[6-(4-methylphenyl)-4H,6H,7H-[1,2,3]triazolo[4,3-c][1,4]oxazine-3-carbonyl]piperidine-4-carboxamide) were identified as potent inhibitors of C. concisus.Communicated by Ramaswamy H. Sarma.


Assuntos
Infecções por Campylobacter , Campylobacter , Peptidomiméticos , Criança , Humanos , Adulto , Peptidomiméticos/farmacologia , Infecções por Campylobacter/microbiologia , Diarreia/microbiologia
6.
Molecules ; 27(20)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36296534

RESUMO

This study was designed to investigate the chemical profile, antihyperglycemic and antilipidemic effect of total methanolic extract (TME) of Bassia eriophora and isolated pure compound umbelliferone (UFN) in high-fat diet (HFD)- and streptozotocin (STZ)- induced diabetic rats. TME was subjected to various techniques of chromatography to yield UFN. Diabetes was induced after eight weeks of HFD by administration of STZ (40 mg/kg) intraperitoneally, and experimental subjects were divided into five groups. The diabetic control showed an increase in levels of blood glucose throughout the experiment. Treatments were initiated in the other four groups with glibenclamide (GLB) (6 mg/kg), TME (200 mg/kg and 400 mg/kg) and isolated UFN (50 mg/kg) orally. The effect on blood glucose, lipid profile and histology of the pancreatic and adipose tissues was assessed. Both 200 and 400 mg/kg of TME produced a comparably significant decrease in blood glucose levels and an increase in insulin levels with GLB. UFN began to show a better blood sugar-lowering effect after 14 days of treatment, comparatively. However, both 400 mg/kg TME and UFN significantly returned blood glucose levels in diabetic rats compared to normal rats. Analysis of the lipid profile showed that while HFD + STZ increased all lipid profile parameters, TME administration produced a significant decrease in their levels. Histopathological examinations showed that treatment with TME and UFN revealed an improved cellular architecture, with the healthy islets of Langerhans and compact glandular cells for pancreatic cells distinct from damaged cells in non-treated groups. Conversely, the adipose tissue displayed apparently normal polygonal fat cells. Therefore, these results suggest that TME has the potential to ameliorate hyperglycemia conditions and control lipid profiles in HFD + STZ-induced diabetic rats.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Ratos , Animais , Estreptozocina , Hipoglicemiantes/farmacologia , Glicemia , Dieta Hiperlipídica/efeitos adversos , Glibureto/farmacologia , Diabetes Mellitus Experimental/patologia , Extratos Vegetais , Umbeliferonas/farmacologia , Lipídeos , Insulinas/efeitos adversos
7.
Immunobiology ; 227(3): 152221, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35483110

RESUMO

Enterococcus faecium is regarded as fourth most emerging common pathogen causing hospital acquired infections (HAIs), with high mortality rate, especially in children, elderly and immunocompromised patients. Recently, due to the emergence of E. faecium resistant strains especially vancomycin resistance (VRE) and their continuously growing resistivity to antibiotics, design of safe vaccine remains a choice for its control. Alternative control through vaccination has received much attention, but there is no clinically approved vaccine against this pathogen. Therefore, in current study we have applied a triple helix approach i.e., Pan-genome, subtractive genome and reverse vaccinology to identify and design potential vaccine candidates and multiepitope-based vaccine (MEV) construct against E. faecium (via core genome analysis from 216 strains). In this study, only 2 outer membrane proteins were identified through genome subtraction of resistant strains genes against human and essential proteins. Subsequently, phosphate ABC transporter substrate binding protein (Psts) was selected as a promiscuous vaccine candidate to develop a potent vaccine model. A final of four epitopes from CD8 + T-cell, CD4 + T-cell epitopes, and B-cell were shortlisted from outer membrane protein with highly antigenic, IFN-γ inducer, and overlapping characteristics for the construction of twelve vaccine models. The V3 construct was found to be highly immunogenic, non-toxic, non-allergenic, highly antigenic and most stable in terms of molecular docking and simulation studies against six HLAs, TLR2, and TLR4 complex. So far, this protein and multiepitope have never been characterized as vaccine targets against E. faecium. The current study proposed V3 as a significant vaccine candidate that could help the scientific community to treat E. faecium infections.


Assuntos
Enterococcus faecium , Vacinologia , Idoso , Criança , Biologia Computacional , Enterococcus faecium/genética , Epitopos de Linfócito T/genética , Humanos , Simulação de Acoplamento Molecular , Vacinas de Subunidades Antigênicas , Resistência a Vancomicina
8.
Infect Genet Evol ; 98: 105233, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104682

RESUMO

Shigella flexneri is the main causative agent of the communicable diarrheal disease, shigellosis. It is estimated that about 80-165 million cases and > 1 million deaths occur every year due to this disease. S. flexneri causes dysentery mostly in young children, elderly and immunocompromised patients, all over the globe. Recently, due to the emergence of S. flexneri antibiotic resistance strains, it is a dire need to predict novel therapeutic drug targets in the bacterium and screen natural products against it, which could eliminate the curse of antibiotic resistance. Therefore, in current study, available antibiotic-resistant genomes (n = 179) of S. flexneri were downloaded from PATRIC database and a pan-genome and resistome analysis was conducted. Around 5059 genes made up the accessory, 2469 genes made up the core, and 1558 genes made up the unique genome fraction, with 44, 34, and 13 antibiotic-resistant genes in each fraction, respectively. Core genome fraction (27% of the pan-genome), which was common to all strains, was used for subtractive genomics and resulted in 384 non-homologous, and 85 druggable targets. Dihydroorotase was chosen for further analysis and docked with natural product libraries (Ayurvedic and Streptomycin compounds), while the control was orotic acid or vitamin B13 (which is a natural binder of this protein). Dynamics simulation of 50 ns was carried out to validate findings for top-scored inhibitors. The current study proposed dihydroorotase as a significant drug target in S. flexneri and 4-tritriacontanone & patupilone compounds as potent drugs against shigellosis. Further experiments are required to ascertain validity of our findings.


Assuntos
Antibacterianos/farmacologia , Produtos Biológicos/antagonistas & inibidores , Descoberta de Drogas/métodos , Pirimidinas/farmacologia , Shigella flexneri/enzimologia , Simulação por Computador , Farmacorresistência Bacteriana , Pirimidinas/biossíntese , Shigella flexneri/efeitos dos fármacos
9.
Saudi J Biol Sci ; 29(1): 1-10, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35002390

RESUMO

BACKGROUND & OBJECTIVES: Low penetration efficiency and retention time are the main therapeutic concerns that make it difficult for most of the drugs to be delivered to the intraocular tissues. These challenging issues are often related to those drugs, which have low or poor solubility and low permeability. The goal of this study was designed to develop nanostructured lipid carriers (NLCs) loaded with itraconazole (ITZ) with the objective of enhancing topical ocular permeation and thereby improving clinical efficacy. MATERIALS AND METHODS: ITZ-loaded NLCs were fabricated by a high-speed homogenization technique using surfactant (Poloxamer 407), and lipids (stearic acid and oleic acid). Optimization of formulations was performed by 3 level factorial design and the selected formulation (F6) was evaluated by differential scanning calorimetry and transmission electron microscopy. Antifungal activity was assessed by measuring the zone of inhibition and irritation potential using the HET-CAM test. RESULTS: The independent variables (lipid ratio-X1 and percentage of emulsifier-X2) have a positive impact on percentage entrapment efficiency (Y2) and percentage release (Y3) but have a negative impact on particle size (Y1). Based on the better entrapment efficiency (94.65%), optimum particle size (150.67 nm), and percentage cumulative drug release (68.67%), batch F6 was selected for further evaluation. Electron microscopic images revealed that the prepared particles are spherical and have nano size. Antifungal studies demonstrated enhancement in the zone of inhibition by formulation F6 as compared to a commercial eye drop. The non-irritancy of optimized formulation (F6) was confirmed with a zero score. INTERPRETATION & CONCLUSION: In summary, the optimized NLCs seem to be a potent carrier for the effective delivery of itraconazole in ocular therapy.

10.
Front Microbiol ; 12: 746410, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34690995

RESUMO

The increasing frequency of S. aureus antimicrobial resistance has spurred interest in identifying alternative therapeutants. We investigated the S. aureus-inhibitory capacity of B. velezensis strains in mouse and bovine models. Among multiple B. velezensis strains that inhibited S. aureus growth in vitro, B. velezensis AP183 provided the most potent inhibition of S. aureus proliferation and bioluminescence in a mouse cutaneous wound (P = 0.02). Histology revealed abundant Gram-positive cocci in control wounds that were reduced in B. velezensis AP183-treated tissues. Experiments were then conducted to evaluate the ability of B. velezensis AP183 to prevent S. aureus biofilm formation on a tracheostomy tube substrate. B. velezensis AP183 could form a biofilm on a tracheostomy tube inner cannula substrate, and that this biofilm was antagonistic to S. aureus colonization. B. velezensis AP183 was also observed to inhibit the growth of S. aureus isolates originated from bovine mastitis cases. To evaluate the inflammatory response of mammary tissue to intramammary inoculation with B. velezensis AP183, we used high dose and low dose inocula in dairy cows. At the high dose, a significant increase in somatic cell count (SCC) and clinical mastitis was observed at all post-inoculation time points (P < 0.01), which resolved quickly compared to S. aureus-induced mastitis; in contrast, the lower dose of B. velezensis AP183 resulted in a slight increase of SCC and no clinical mastitis. In a subsequent experiment, all mammary quarters in four cows were induced to have grade 1 clinical mastitis by intramammary inoculation of a S. aureus mastitis isolate; following mastitis induction, eight quarters were treated with B. velezensis AP183 and milk samples were collected from pretreatment and post-treatment samples for 9 days. In groups treated with B. velezensis AP183, SCC and abundance of S. aureus decreased with significant reductions in S. aureus after 3 days post-inoculation with AP183 (P = 0.04). A milk microbiome analysis revealed significant reductions in S. aureus relative abundance in the AP183-treated group by 8 days post-inoculation (P = 0.02). These data indicate that B. velezensis AP183 can inhibit S. aureus biofilm formation and its proliferation in murine and bovine disease models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA