Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FEBS J ; 291(12): 2565-2589, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38466799

RESUMO

Mutations in FBXO7 have been discovered to be associated with an atypical parkinsonism. We report here a new homozygous missense mutation in a paediatric patient that causes an L250P substitution in the dimerisation domain of Fbxo7. This alteration selectively ablates the Fbxo7-PI31 interaction and causes a significant reduction in Fbxo7 and PI31 levels in patient cells. Consistent with their association with proteasomes, patient fibroblasts have reduced proteasome activity and proteasome subunits. We also show PI31 interacts with the MiD49/51 fission adaptor proteins, and unexpectedly, PI31 acts to facilitate SCFFbxo7-mediated ubiquitination of MiD49. The L250P mutation reduces the SCFFbxo7 ligase-mediated ubiquitination of a subset of its known substrates. Although MiD49/51 expression was reduced in patient cells, there was no effect on the mitochondrial network. However, patient cells show reduced levels of mitochondrial function and mitophagy, higher levels of ROS and are less viable under stress. Our study demonstrates that Fbxo7 and PI31 regulate proteasomes and mitochondria and reveals a new function for PI31 in enhancing the SCFFbxo7 E3 ubiquitin ligase activity.


Assuntos
Proteínas F-Box , Mitocôndrias , Complexo de Endopeptidases do Proteassoma , Ubiquitinação , Humanos , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mutação de Sentido Incorreto , Mitofagia/genética , Fibroblastos/metabolismo , Masculino , Células HEK293 , Feminino
2.
iScience ; 24(1): 102029, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33506190

RESUMO

Loss of membrane potential of sperm mitochondria has been regarded as the first step preceding mitophagy degradation after their entry into the C. elegans oocyte at fertilization. This is in line with the classical view of mitophagy of defective or abnormal mitochondria and could serve as a recognition signal for their specific and quick autophagy degradation. Here, using TMRE (tetramethylrhodamine ethyl ester) and live imaging we show that this is not the case. Instead, sperm inherited mitochondria show a stable labeling with TMRE before and at the time of autophagosomes formation. Interestingly, this labeling remains in late-stage-embryos of autophagy-defective-mutants suggesting that the loss of membrane potential occurs upon the entry of the mitochondria into the autophagy pathway. These stabilized and still polarized sperm mitochondria remain distinct but associated with the maternal-derived mitochondrial network suggesting a mechanism that prevents their fusion and represents an efficient additional protective system against fertilization-induced heteroplasmy.

3.
Front Physiol ; 10: 1278, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649556

RESUMO

Fbxo7 is the substrate-recognition subunit of an SCF-type ubiquitin E3 ligase complex. It has physiologically important functions in regulating mitophagy, proteasome activity and the cell cycle in multiple cell types, like neurons, lymphocytes and erythrocytes. Here, we show that in addition to the previously known Parkinsonian and hematopoietic phenotypes, male mice with reduced Fbxo7 expression are sterile. In these males, despite successful meiosis, nuclear elongation and eviction of histones from chromatin, the developing spermatids are phagocytosed by Sertoli cells during late spermiogenesis, as the spermatids undergo cytoplasmic remodeling. Surprisingly, despite the loss of all germ cells, there was no evidence of the symplast formation and cell sloughing that is typically associated with spermatid death in other mouse sterility models, suggesting that novel cell death and/or cell disposal mechanisms may be engaged in Fbxo7 mutant males. Mutation of the Drosophila Fbxo7 ortholog, nutcracker (ntc) also leads to sterility with germ cell death during cytoplasmic remodeling, indicating that the requirement for Fbxo7 at this stage is conserved. The ntc phenotype was attributed to decreased levels of the proteasome regulator, DmPI31 and reduced proteasome activity. Consistent with the fly model, we observe a reduction in PI31 levels in mutant mice; however, there is no alteration in proteasome activity in whole mouse testes. Our results are consistent with findings that Fbxo7 regulates PI31 protein levels, and indicates that a defect at the late stages of spermiogenesis, possibly due to faulty spatial dynamics of proteasomes during cytoplasmic remodeling, may underlie the fertility phenotype in mice.

4.
J Pathol ; 249(2): 241-254, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31144295

RESUMO

The field of Parkinson's disease research has been impeded by the absence of animal models that clearly phenocopy the features of this neurodegenerative condition. Mutations in FBXO7/PARK15 are associated with both sporadic Parkinson's disease and a severe form of autosomal recessive early-onset Parkinsonism. Here we report that conditional deletion of Fbxo7 in the midbrain dopamine neurons results in an early reduction in striatal dopamine levels, together with a slow, progressive loss of midbrain dopamine neurons and onset of locomotor defects. Unexpectedly, a later compensatory response led to a near-full restoration of dopaminergic fibre innervation in the striatum, but nigral cell loss was irreversible. Mechanistically, there was increased expression in the dopamine neurons of FBXO7-interacting protein, RPL23, which is a sensor of ribosomal stress that inhibits MDM2, the negative regulator of p53. A corresponding activated p53 transcriptional signature biased towards pro-apoptotic genes was also observed. These data suggest that the neuroprotective role of FBXO7 involves its suppression of the RPL23-MDM2-p53 axis that promotes cell death in dopaminergic midbrain neurons. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Proteínas F-Box/metabolismo , Mesencéfalo/metabolismo , Degeneração Neural , Doença de Parkinson/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Comportamento Animal , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Proteínas F-Box/genética , Feminino , Locomoção , Masculino , Mesencéfalo/patologia , Mesencéfalo/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/fisiopatologia , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Ribossômicas/genética , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
5.
Adv Anat Embryol Cell Biol ; 231: 1-23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30467692

RESUMO

The nematode C. elegans represents a powerful experimental system with key properties and advantages to study the mechanisms underlying mitochondrial DNA maternal inheritance and paternal components sorting. First, the transmission is uniparental and maternal as in many animal species; second, at fertilization sperm cells contain both mitochondria and mtDNA; and third, the worm allows powerful genetics and cell biology approaches to characterize the mechanisms underlying the uniparental and maternal transmission of mtDNA. Fertilization of C. elegans oocyte occurs inside the transparent body when the mature oocyte resumes meiosis I and passes through the spermatheca. One amoeboid sperm cell fuses with the oocyte and delivers its whole content. Among the structures entering the embryo, the sperm mitochondria and a fraction of the nematode-specific membranous organelles are rapidly degraded, whereas others like centrioles and sperm genomic DNA are transmitted. In this chapter, we will review the knowledge acquired on sperm inherited organelles clearance during the recent years using C. elegans.


Assuntos
Autofagossomos/metabolismo , Caenorhabditis elegans/embriologia , DNA Mitocondrial/metabolismo , Fertilização/fisiologia , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Espermatozoides/metabolismo , Animais , Autofagossomos/enzimologia , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , DNA Mitocondrial/genética , Embrião não Mamífero/enzimologia , Embrião não Mamífero/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/genética , Dinâmica Mitocondrial/fisiologia , Oócitos/metabolismo
6.
Development ; 142(9): 1705-16, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25922527

RESUMO

Macroautophagic degradation of sperm-inherited organelles prevents paternal mitochondrial DNA transmission in C. elegans. The recruitment of autophagy markers around sperm mitochondria has also been observed in mouse and fly embryos but their role in degradation is debated. Both worm Atg8 ubiquitin-like proteins, LGG-1/GABARAP and LGG-2/LC3, are recruited around sperm organelles after fertilization. Whereas LGG-1 depletion affects autophagosome function, stabilizes the substrates and is lethal, we demonstrate that LGG-2 is dispensable for autophagosome formation but participates in their microtubule-dependent transport toward the pericentrosomal area prior to acidification. In the absence of LGG-2, autophagosomes and their substrates remain clustered at the cell cortex, away from the centrosomes and their associated lysosomes. Thus, the clearance of sperm organelles is delayed and their segregation between blastomeres prevented. This allowed us to reveal a role of the RAB-5/RAB-7 GTPases in autophagosome formation. In conclusion, the major contribution of LGG-2 in sperm-inherited organelle clearance resides in its capacity to mediate the retrograde transport of autophagosomes rather than their fusion with acidic compartments: a potential key function of LC3 in controlling the fate of sperm mitochondria in other species.


Assuntos
Autofagia/fisiologia , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Organelas/metabolismo , Espermatozoides/citologia , Animais , Transporte Biológico , Herança Extracromossômica/fisiologia , Imunofluorescência , Masculino , Microscopia Eletrônica de Transmissão , Interferência de RNA
7.
Invest New Drugs ; 33(1): 45-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25338747

RESUMO

Dysregulation of angiogenesis has been associated with many pathological disorders, including cancer; where angiogenesis has been found to be critical for the maintenance and metastasis of tumours. One of the pathways involved in the regulation of angiogenesis is the phosphatidylinositol3-kinase (PI3K) signalling pathway. The PI3K family consists of enzymes that phosphorylate the 3-OH of the inositol ring of phosphatidyl inositol. There are four isoforms, PI3Kα, PI3Kß, PI3Kγ and PI3Kδ, that are signalling intermediaries involved in numerous pathways that sustain and maintain the tumours. In this study, we screened eight novel benzoxazine inhibitors of both PI3K isoforms and the related DNA-PK, for their anti-angiogenic effects. Our findings identified the novel benzoxazine (7, 8 (substituted)-2-morpholino-benz (1,3) oxazine: LTUSI122) to be non-toxic at concentrations up to 5 µM, while exhibiting significant inhibition of various aspects of angiogenesis including endothelial proliferation, migration and tube formation. The molecular mechanisms were examined using an angiogenesis array, revealing inhibition of several proliferative and migratory angiogenic factors, including VEGFR, MMP, IL-8, uPAR and MCP; and stimulation of the endogenous inhibitor, endostatin. We hypothesize that these anti-angiogenic effects are mediated by targeting an important signaling intermediary, PI3Kα, and subsequently its action on vascular endothelial growth factor (VEGF, a key growth factor in the process of angiogenesis). If used in combination with more targeted therapies, LTUSI122 could reduce tumour growth and increase the efficacy of these treatments.


Assuntos
Inibidores da Angiogênese/farmacologia , Benzoxazinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL5/metabolismo , Endostatinas/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Interleucina-8/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Proteínas Quimioatraentes de Monócitos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Trombopoetina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
8.
Autophagy ; 8(3): 421-3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22361582

RESUMO

In most animals, during oocyte fertilization the spermatozoon provides DNA and centrioles together with some cytoplasm and organelles, but paternal mitochondria are generally eliminated in the embryo. Using the model animal C. elegans we have shown that paternal organelle degradation is dependent on the formation of autophagosomes a few minutes after fertilization. This macroautophagic process is preceded by an active ubiquitination of some spermatozoon-inherited organelles. Analysis of fertilized mouse embryos suggests that this autophagy event is evolutionarily conserved.


Assuntos
Autofagia , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Organelas/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Animais , Caenorhabditis elegans/ultraestrutura , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Espermatozoides/ultraestrutura , Ubiquitina/metabolismo
9.
Science ; 334(6059): 1144-7, 2011 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-22033522

RESUMO

In sexual reproduction of most animals, the spermatozoon provides DNA and centrioles, together with some cytoplasm and organelles, to the oocyte that is being fertilized. Paternal mitochondria and their genomes are generally eliminated in the embryo by an unknown degradation mechanism. We show that, upon fertilization, a Caenorhabditis elegans spermatozoon triggers the recruitment of autophagosomes within minutes and subsequent paternal mitochondria degradation. Whereas the nematode-specific sperm membranous organelles are ubiquitinated before autophagosome formation, the mitochondria are not. The degradation of both paternal structures and mitochondrial DNA requires an LC3-dependent autophagy. Analysis of fertilized mouse embryos shows the localization of autophagy markers, which suggests that this autophagy event is evolutionarily conserved to prevent both the transmission of paternal mitochondrial DNA to the offspring and the establishment of heteroplasmy.


Assuntos
Autofagia , Caenorhabditis elegans/embriologia , DNA Mitocondrial/genética , Embrião não Mamífero/fisiologia , Mitocôndrias/metabolismo , Espermatozoides/ultraestrutura , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/análise , DNA Mitocondrial/análise , DNA Mitocondrial/metabolismo , Desenvolvimento Embrionário , Feminino , Fertilização , Organismos Hermafroditas , Lisossomos/metabolismo , Masculino , Camundongos , Oócitos/fisiologia , Organelas/metabolismo , Fagossomos/metabolismo , Espermatozoides/química , Espermatozoides/fisiologia , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA