Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Des Devel Ther ; 16: 873-885, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35378924

RESUMO

Background: Glyoxalase system is one of the defense cellular mechanisms that protect cells against endogenous harmful metabolites, mainly methylglyoxal (MG), through conversion of cytotoxic methylglyoxal into the non-toxic lactic acid. Glyoxalase system comprises of two enzymes glyoxalase I, glyoxalase II, and a catalytic amount of reduced glutathione. Cancerous cells overexpress glyoxalase I, making it a target for cancer therapy. Many studies have been conducted to identify potent Glx-I inhibitors. Methods: Aiming to discover and develop novel Glx-I inhibitors, a series of 1,4-benzenesulfonamide derivatives were designed, synthesized, and biologically evaluated in vitro against human Glx-I enzyme. Seventeen compounds were designed based on the hit compound that was obtained from searching the National Cancer Institute (NCI) database. The synthesis of the target compounds (13-29) was accomplished utilizing an azo coupling reaction of aniline derivatives and activated substituted aromatic compounds. To understand the binding mode of the active compounds at the active site of Glx-I, docking studies were performed. Results: Structure activity relationship (SAR) studies were accomplished which led to the identification of several compounds that showed potent inhibitory activity with IC50 values below 10 µM. Among the compounds tested, compounds (E)-2-hydroxy-5-((4-sulfamoylphenyl)diazenyl)benzoic acid (26) and (E)-4-((8-hydroxyquinolin-5-yl)diazenyl) benzenesulfonamide (28) displayed potent Glx-I inhibitory activity with IC50 values of 0.39 µM and 1.36 µM, respectively. Docking studies of compounds 26 and 28 were carried out to illustrate the binding mode of the molecules into the Glx-I active site. Conclusion: Our results show that compounds 26 and 28 displayed potent Glx-I inhibitory activity and can bind the Glx-I well. These findings should lead us to discover new classes of compounds with better Glx-I inhibition.


Assuntos
Lactoilglutationa Liase , Humanos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Sulfonamidas/química , Benzenossulfonamidas
2.
Chem Biol Interact ; 345: 109511, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-33989593

RESUMO

Methylglyoxal is a dicarbonyl compound recruited as a potential cytotoxic marker, initially presents in cells and considered as a metabolite of the glycolytic pathway. Our aim is to demonstrate the inhibitory effect of 3, 3'-[3-(5-chloro-2-hydroxyphenyl)-3-oxopropane-1, 1-diyl] Bis (4-hydroxycoumarin) on the glyoxalase system, and indirectly its anticancer activity. The docking of OT-55 was conducted by using Flexible docking protocol, ChiFlex and libdock tools inside the active site of Glo-I indicated that both hydrogen bonding and hydrophobic interactions contributed significantly in establishing potent binding with the active site which is selected as a strong inhibitor with high scoring values and maximum Gibbs free energy. Coumarin-liposome formulation was characterized and evaluated in vivo against chemically induced hepatocarcinoma in Wistar rats. After Diethylnitrosamine (DEN) induction, microscopic assessment was realized; precancerous lesions were developed showing an increase of both tumor-associated lymphocyte and multiple tumor acini supported by the blood investigation. Our finding also suggested a preferential uptake of liposomes respectively in liver, kidney, lung, brain and spleen in the DEN-treated animals. OT-55 has also been shown to inhibit the activity of Glo-I in vitro as well as in DEN-treated rats. An abnormal high level of MGO of up to 50% was recorded followed by a reduction in glucose consumption and lactate dehydrogenase production validated in the positive control. MGO generates apoptosis as depicted by focal hepatic lesions. Also, no deleterious effects in the control group were observed after testing our coumarin but rather a vascular reorganization leading to nodular regenerative hyperplasia. Involved in the detoxification process, liver GSH is restored in intoxicated rats, while no changes are seen between controls. At the endothelial cell, OT-55 appears to modulate the release of NO only in the DEN-treated group. OT-55 would behave both as an anticancer agent but also as an angiogenic factor regarding results obtained.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/patologia , Espaço Intracelular/efeitos dos fármacos , Lactoilglutationa Liase/antagonistas & inibidores , Neoplasias Hepáticas/patologia , Modelos Moleculares , Aldeído Pirúvico/metabolismo , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transporte Biológico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Espaço Intracelular/metabolismo , Lactoilglutationa Liase/química , Lactoilglutationa Liase/metabolismo , Lipossomos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Terapia de Alvo Molecular , Conformação Proteica , Ratos , Ratos Wistar , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Biochimie ; 168: 169-184, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31707099

RESUMO

Two analytical methods; high performance liquid chromatography and gas chromatography were used to determine the content of 2-methylquinoxaline, a methylglyoxal-derived agent in sera from cattle with fascioliasis. Methylglyoxal is a highly mutagenic and cytotoxic reactive dicarbonyl compound formed by non-enzymatic fragmentation of triose phosphate GAP and DHAP during glycolysis which regularly contributes to repositioning the energetic balance between physiological and pathological situations. The aim of this study was to propose the MGO as a new biomarker in the bovine fasciolosis. Strongly infected animals showed a correlation between the relatively high levels of Fasciola hepatica anti-f2 antibody and methylglyoxal compared to unharmed animals. Also, an acute hyperglycemia was recorded and closely related to hepatic parenchyma hyperplasia, inflammation, bile ducts obstruction and scléro-fibrous foci formation.Unlike HPLC, which has shown analytical flaws and irregularities, GC-MS remains an excellent diagnostic tool for detecting and quantifying methylglyoxal in biological fluids. The developed method has been validated under FDA guidelines. A full scan-range was set from m/z 39 to 144/999 and the molecular weight of the 2-methylquinoxaline was identified according to NIST Database and ES. Methylglyoxal was the only analyte successfully quantified in a relatively short run time. It was linear over a concentration range of 0.057-5.7  µg.ml-1with mean recoveries and RSD of 118% and 3.63% respectively. The intra and inter-day assays were satisfying and not exceed 3.00%. Results reflect the degree of precision of our method and indicate that MGO was an important contributor to understand the hepatic failure independently of other serum markers.


Assuntos
Biomarcadores/sangue , Fasciolíase/diagnóstico , Fasciolíase/veterinária , Cromatografia Gasosa-Espectrometria de Massas/métodos , Aldeído Pirúvico/sangue , Animais , Bovinos , Cromatografia Líquida de Alta Pressão/métodos , Fasciola hepatica/isolamento & purificação , Feminino , Masculino
4.
Drug Des Devel Ther ; 13: 423-433, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30774307

RESUMO

BACKGROUND: Chrysin (5,7-dihydroxyflavone) is a widely distributed natural flavonoid found in many plant extracts, honey and propolis. Several studies revealed that chrysin possesses multiple biological activities including anti-cancer effects. It has been established that activation of apoptosis is the key molecular mechanism responsible for the cytotoxic potential of chrysin. The objective of this study was to design and synthesize potent chrysin analogues as potential cytotoxic agents. METHODS: A series of chrysin derivatives (3a-m) bearing N'-alkylidene/arylideneacetohydrazide moiety were designed, synthesized, and evaluated for their antiproliferative activity against two human breast cancer cell lines, MDA-MB-231 and MCF-7 by applying the MTT colorimetric assay. Selected compounds were tested for their ability to induce apoptosis through caspase 3/7 activation in MDA-MB-231 cells only since MCF-7 cells lack procaspase 3. RESULTS: Compounds (3a-m) were obtained as geometrical isomers (E/Z isomers) in good yields upon treatment of hydrazide 5 with different aliphatic and aromatic aldehydes. Most of the synthesized compounds demonstrated moderate-to-good activity against both cell lines. The cytotoxicity results revealed the importance of lipophilic moieties at C-4 position of ring D in imparting the cytotoxic activities to the compounds. Compound 3e with 4-benzyloxy substituent was found to be the most active among the synthesized compounds with IC50 3.3 µM against MDA-MB-231 and 4.2 µM against MCF-7 cell lines. The cytotoxic potential of compound 3e is comparable to that of the well-known anti-cancer agent doxorubicin. In addition, compounds substituted with fluoro (3b), nitro (3h), and dimethylamino (3j) exhibited good cytotoxicity with IC50 <6.5 µM against MDA-MB-231 and <12 µM against MCF-7. Selected compounds were able to induce apoptosis in MDA-MB-231 cells as indicated by caspase-3 and/or -7 activation. CONCLUSION: Our results show that the newly designed chrysin derivatives exert anticancer activity in human breast cancer cell lines, MDA-MB-231 and MCF-7. Therefore, they can be considered as leads for further development of more potent and selective cytotoxic agents.


Assuntos
Antineoplásicos/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Desenho de Fármacos , Flavonoides/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ativação Enzimática/efeitos dos fármacos , Flavonoides/síntese química , Flavonoides/química , Humanos , Células MCF-7 , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA