Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 194(7): e63579, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38436550

RESUMO

Due to the majority of currently available genome data deriving from individuals of European ancestry, the clinical interpretation of genomic variants in individuals from diverse ethnic backgrounds remains a major diagnostic challenge. Here, we investigated the genetic cause of a complex neurodevelopmental phenotype in two Palestinian siblings. Whole exome sequencing identified a homozygous missense TECPR2 variant (Chr14(GRCh38):g.102425085G>A; NM_014844.5:c.745G>A, p.(Gly249Arg)) absent in gnomAD, segregating appropriately with the inheritance pattern in the family. Variant assessment with in silico pathogenicity prediction and protein modeling tools alongside population database frequencies led to classification as a variant of uncertain significance. As pathogenic TECPR2 variants are associated with hereditary sensory and autonomic neuropathy with intellectual disability, we reviewed previously published candidate TECPR2 missense variants to clarify clinical outcomes and variant classification using current approved guidelines, classifying a number of published variants as of uncertain significance. This work highlights genomic healthcare inequalities and the challenges in interpreting rare genetic variants in populations underrepresented in genomic databases. It also improves understanding of the clinical and genetic spectrum of TECPR2-related neuropathy and contributes to addressing genomic data disparity and inequalities of the genomic architecture in Palestinian populations.


Assuntos
Sequenciamento do Exoma , Neuropatias Hereditárias Sensoriais e Autônomas , Mutação de Sentido Incorreto , Linhagem , Irmãos , Humanos , Masculino , Feminino , Mutação de Sentido Incorreto/genética , Neuropatias Hereditárias Sensoriais e Autônomas/genética , Neuropatias Hereditárias Sensoriais e Autônomas/patologia , Neuropatias Hereditárias Sensoriais e Autônomas/diagnóstico , Fenótipo , Criança , Árabes/genética , Predisposição Genética para Doença , Homozigoto
2.
Am J Hum Genet ; 109(11): 2068-2079, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36283405

RESUMO

Non-centrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CAMSAP family of molecules. Using exome sequencing on samples from five unrelated families, we show that bi-allelic CAMSAP1 loss-of-function variants cause a clinically recognizable, syndromic neuronal migration disorder. The cardinal clinical features of the syndrome include a characteristic craniofacial appearance, primary microcephaly, severe neurodevelopmental delay, cortical visual impairment, and seizures. The neuroradiological phenotype comprises a highly recognizable combination of classic lissencephaly with a posterior more severe than anterior gradient similar to PAFAH1B1(LIS1)-related lissencephaly and severe hypoplasia or absence of the corpus callosum; dysplasia of the basal ganglia, hippocampus, and midbrain; and cerebellar hypodysplasia, similar to the tubulinopathies, a group of monogenic tubulin-associated disorders of cortical dysgenesis. Neural cell rosette lineages derived from affected individuals displayed findings consistent with these phenotypes, including abnormal morphology, decreased cell proliferation, and neuronal differentiation. Camsap1-null mice displayed increased perinatal mortality, and RNAScope studies identified high expression levels in the brain throughout neurogenesis and in facial structures, consistent with the mouse and human neurodevelopmental and craniofacial phenotypes. Together our findings confirm a fundamental role of CAMSAP1 in neuronal migration and brain development and define bi-allelic variants as a cause of a clinically distinct neurodevelopmental disorder in humans and mice.


Assuntos
Lissencefalias Clássicas e Heterotopias Subcorticais em Banda , Lisencefalia , Malformações do Sistema Nervoso , Humanos , Animais , Camundongos , Lisencefalia/genética , Alelos , Tubulina (Proteína)/genética , Fenótipo , Malformações do Sistema Nervoso/genética , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/genética , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética
3.
Brain Sci ; 11(5)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064836

RESUMO

The hereditary spastic paraplegias (HSPs) are a large clinically heterogeneous group of genetic disorders classified as 'pure' when the cardinal feature of progressive lower limb spasticity and weakness occurs in isolation and 'complex' when associated with other clinical signs. Here, we identify a homozygous frameshift alteration occurring in the last coding exon of the protein tyrosine phosphatase type 23 (PTPN23) gene in an extended Palestinian family associated with autosomal recessive complex HSP. PTPN23 encodes a catalytically inert non-receptor protein tyrosine phosphatase that has been proposed to interact with the endosomal sorting complex required for transport (ESCRT) complex, involved in the sorting of ubiquitinated cargos for fusion with lysosomes. In view of our data, we reviewed previously published candidate pathogenic PTPN23 variants to clarify clinical outcomes associated with pathogenic gene variants. This determined that a number of previously proposed candidate PTPN23 alterations are likely benign and revealed that pathogenic biallelic PTPN23 alterations cause a varied clinical spectrum comprising of complex HSP associated with microcephaly, which may occur without intellectual impairment or involve more severe neurological disease. Together, these findings highlight the importance of the inclusion of the PTPN23 gene on HSP gene testing panels globally.

4.
Eur J Hum Genet ; 29(10): 1570-1576, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34012134

RESUMO

Isolated mitochondrial complex II deficiency is a rare cause of mitochondrial respiratory chain disease. To date biallelic variants in three genes encoding mitochondrial complex II molecular components have been unequivocally associated with mitochondrial disease (SDHA/SDHB/SDHAF1). Additionally, variants in one further complex II component (SDHD) have been identified as a candidate cause of isolated mitochondrial complex II deficiency in just two unrelated affected individuals with clinical features consistent with mitochondrial disease, including progressive encephalomyopathy and lethal infantile cardiomyopathy. We present clinical and genomic investigations in four individuals from an extended Palestinian family with clinical features consistent with an autosomal recessive mitochondrial complex II deficiency, in which our genomic studies identified a homozygous NM_003002.3:c.[205 G > A];[205 G > A];p.[(Glu69Lys)];[(Glu69Lys)] SDHD variant as the likely cause. Reviewing previously published cases, these findings consolidate disruption of SDHD function as a cause of mitochondrial complex II deficiency and further define the phenotypic spectrum associated with SDHD gene variants.


Assuntos
Complexo II de Transporte de Elétrons/deficiência , Erros Inatos do Metabolismo/genética , Doenças Mitocondriais/genética , Mutação de Sentido Incorreto , Succinato Desidrogenase/genética , Criança , Complexo II de Transporte de Elétrons/genética , Feminino , Homozigoto , Humanos , Recém-Nascido , Masculino , Erros Inatos do Metabolismo/patologia , Doenças Mitocondriais/patologia , Fenótipo , Adulto Jovem
5.
Am J Hum Genet ; 84(3): 412-7, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19268275

RESUMO

Steatorrhea and malabsorption of lipid-soluble vitamins due to exocrine pancreatic insufficiency are common in patients with cystic fibrosis and are predominant in Shwachman-Bodian-Diamond, Pearson, and Johanson-Blizzard syndromes. In four patients who suffered from congenital exocrine pancreatic insufficiency, dyserythropoeitic anemia, and calvarial hyperostosis, we excluded these disorders and identified, by using homozygosity mapping, a mutation in the COX4I2 gene. The COX4 protein is an essential structural subunit of cytochrome c oxidase complex and has two isoforms, encoded by two different genes. We show that the ratio of COX4I2 to COX4I1 mRNA is relatively high in human acinar cells. The mutation is associated with marked reduction of COX4I2 expression and with striking attenuation of the physiologic COX4I2 response to hypoxia. Mutation analysis of COX4I2 is warranted in patients with malabsorption due to exocrine pancreatic insufficiency and in patients with dyserythropoeitic anemia.


Assuntos
Anemia Diseritropoética Congênita/genética , Citocromos c/genética , Insuficiência Pancreática Exócrina/genética , Hiperostose/genética , Crânio/patologia , Sequência de Aminoácidos , Complexo IV da Cadeia de Transporte de Elétrons , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Isoformas de Proteínas/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA