Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e21312, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37920528

RESUMO

Overall, drug design is a dynamic and evolving field, with researchers constantly working to improve their understanding of molecular interactions, develop new computational methods, and explore innovative techniques for creating effective and safe medications. The process can involve steps such as the identification of targets, the discovery of lead compounds, lead optimization, preliminary testing, human trials, regulatory approval and finally post-marketing surveillance, all aimed at bringing a new drug from concept to market. In this article, the synthesis of the novel triazolequinoxalin (TZQ) 1-((1-hexyl-1H-1,2,3-triazol-5-yl)methyl)-3-phenylquinoxalin-2(1H)-one (4) is reported. The structure has been identified with a variety of spectroscopic methods (1H, 13C NMR, and LC-MS) and finally, the structure has been determined by X-ray diffraction (XRD) studies. The TZQ molecule has crystallized in the monoclinic space C2/c group with unit cell dimensions a = 41.201(2) Å, b = 10.6339(6) Å, c = 9.4997(4) Å, ß = 93.904(4). The crystal structure is stabilized by intermolecular interactions (N-H ⋯ O and N-H … Cg) occurring within the molecule. The presence of these intermolecular interactions is evaluated through analysis of Hirshfeld surfaces (HS) and two-dimensional (2D) chemical fingerprints map. Additionally, energy frameworks were employed to identify the prevailing interaction energy influencing the molecular arrangement. Density Functional Theory (DFT) calculations were computed to establish concurrence between theoretical and experimental results. Furthermore, the HOMO-LUMO energy levels were determined using the B3LYP/6-31+G(d, p) level of theory. Finally, molecular docking was used to predict the anti-cancer activity of the compound (4) against PFKFB3 kinase and presented noticeable hydrophilic and hydrophobic interactions at the active site region.

2.
Heliyon ; 9(8): e18496, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37533978

RESUMO

A nickel-vanadium-based bimetallic precursor was produced using the polymerization process by urea-formaldehyde copolymers. The precursor was then calcined at 800 °C in an argon ambiance to form a Ni3V2O8-NC magnetic nanocomposite. Powerful techniques were used to study the physical characteristics and chemical composition of the fabricated Ni3V2O8-NC electrode. PXRD, Raman, and FTIR analyses proved that the crystal structure of Ni3V2O8-NC included N-doped graphitic carbon. FESEM and TEM analyses imaging showed the distribution of the Ni3V2O8 nanoparticles on the layered graphitic carbon structure. TEM images showed the prepared sample has a particle size of around 10-15 nm with an enhanced active site area of 146 m2/g, as demonstrated by BET analysis. Ni3V2O8-NC nanocomposite exhibits magnetic behaviors and a magnetization saturation value of 35.99 emu/g. The electrochemical (EC) studies of the synthesized Ni3V2O8-NC electrode proceeded in an EC workstation of three-electrode. In a 5 M potassium hydroxide as an electrolyte, the cyclic voltmeter exhibited an enhanced capacitance (CS) of 915 F/g at 50 mV/s. Galvanic charge-discharge (GCD) study also exhibited a superior capacitive improvement of 1045 F/g at a current density (It) of 10 A/g. Moreover, the fabricated Ni3V2O8-NC nanocomposite displays a good power density (Pt) of 356.67 W/kg, improved ion accessibility, and substantial charge storage. At the high energy density (Et) of 67.34 W h/kg, the obtained Pt was 285.17 W/kg. The enhanced GCD rate, cycle stability, and Et of the Ni3V2O8-NC magnetic nanocomposite nominate the sample as an excellent supercapacitor electrode. This study paves the way for developing effective, efficient, affordable, and ecologically friendly electrode materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA