Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 25(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38542081

RESUMO

Breast cancer (BC) and ovarian cancer (OC) are rapidly increasing in Saudi Arabia. BRCA1 and MGMT epimutations have been linked to a higher risk of these malignancies. The present research investigated the impact of these epimutations on the prevalence of BC and OC among Saudi women. DNA methylation was evaluated using methylation-specific PCR, whereas mRNA expression levels were assessed using qRT-PCR. We evaluated white blood cell (WBC)-BRCA1 methylation in 1958 Saudi women (908 BC patients, 223 OC patients, and 827 controls). MGMT methylation was determined in 1534 of the 1958 women (700 BC patients, 223 OC patients, and 611 controls). BRCA1 methylation was detected in 8.6% of the controls and 11% of the BC patients. This epimutation was linked to 13.8% of the early-onset BC patients (p = 0.003) and 20% of the triple-negative breast cancer (TNBC) patients (p = 0.0001). BRCA1 methylation was also detected in 14% of the OC patients (p = 0.011), 19.4% of patients aged <55 years (p = 0.0007), and 23.4% of high-grade serous ovarian cancer (HGSOC) patients. In contrast, the BRCA1 mutation was detected in 24% of the OC patients, 27.4% of patients aged ≥55 years, and 26.7% of the HGSOC patients. However, MGMT methylation was detected in 10% of the controls and 17.4% of the BC patients (p = 0.0003). This epimutation was linked to 26.4% of the late-onset BC patients (p = 0.0001) and 11% of the TNBC patients. MGMT methylation was also found in 15.2% of the OC patients (p = 0.034) and 19.1% of HGSOC patients (p = 0.054). Furthermore, 36% of the BRCA1-methylated patients and 34.5% of the MGMT-methylated patients had a family history of cancer, including breast and ovarian cancer. Notably, BRCA1 and MGMT mRNA levels were greater in the WBC RNA of the BC patients and cancer-free methylation carriers than in that of the OC patients. Our data indicate that BRCA1 and MGMT epimutations significantly contribute to the development of breast cancer and ovarian cancer in Saudi cancer patients. These blood-based biomarkers could help identify female patients at high risk of developing TNBC and HGSOC at an early age.


Assuntos
Neoplasias da Mama , Neoplasias Ovarianas , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias da Mama/metabolismo , Arábia Saudita/epidemiologia , Regiões Promotoras Genéticas , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Metilação de DNA , Fatores de Risco , Neoplasias Ovarianas/epidemiologia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Predisposição Genética para Doença , Metilases de Modificação do DNA/genética , Metilases de Modificação do DNA/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo
2.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240365

RESUMO

Constitutional BRCA1-methylation is a cancer risk factor for breast (BC) and ovarian (OC) cancer. MiR-155, regulated by BRCA1, is a multifunctional microRNA that plays a crucial role in the immune system. The present study assessed the modulation of miR-155-5p expression in peripheral white blood cells (WBCs) of BC and OC patients and cancer-free (CF) BRCA1-methylation female carriers. Additionally, we investigated the potential of curcumin to suppress miR-155-5p in BRCA1-deficient breast cancer cell lines. MiR-155-5p expression was measured using a stem-loop RT-qPCR method. Gene expression levels were determined using qRT-PCR and immunoblotting. MiR-155-5p was more highly expressed in the BRCA1-hypermethylated HCC-38 and UACC-3199 BC cell lines than in the BRCA1-mutated (HCC-1937) and WT BRCA1 (MDA-MB-321) cell lines. Curcumin suppressed miR-155-5p in the HCC-38 cells but not in the HCC-1937 cells via the re-expression of BRCA1. Elevated levels of miR-155-5p were detected in patients with non-aggressive and localized breast tumors and in patients with late-stage aggressive ovarian tumors, as well as in CF BRCA1-methylation carriers. Notably, IL2RG levels were reduced in the OC and CF groups but not in the BC group. Together, our findings suggest opposing effects of WBC miR-155-5p, according to the cell and cancer type. In addition, the results point to miR-155-5p as a candidate biomarker of cancer risk among CF-BRCA1-methylation carriers.


Assuntos
Neoplasias da Mama , Carcinoma Hepatocelular , Curcumina , Neoplasias Hepáticas , MicroRNAs , Humanos , Feminino , Curcumina/farmacologia , Metilação , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Biomarcadores/metabolismo , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias da Mama/genética , Proteína BRCA1/genética , Proteína BRCA1/metabolismo
3.
Oncol Lett ; 24(2): 276, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35782895

RESUMO

Constitutive breast cancer type 1 gene (BRCA1) promoter methylation is associated with increased cancer risk, but its role in cancer-free (CF) female carriers is incompletely understood. MicroRNA (miR) is modulated during early tumorigenesis. The present study assessed the modulation of miR-126 expression in the peripheral white blood cells (WBC) of patients with breast cancer (BC) and ovarian cancer (OC) as a biomarker of cancer risk in BRCA1 methylation carriers. A total of 1,114 female subjects [502 patients with BC, 187 patients with OC and 425 CF volunteers] were involved. Screening for BRCA1 promoter methylation in WBC was performed using the methylation-specific polymerase chain reaction (PCR) assay, BRCA1 mRNA was analyzed using a reverse transcription-quantitative PCR assay and miR-126 expression was analyzed using a stem-loop RT-qPCR assay. WBC BRCA1 promoter methylation status was significantly associated with OC (P=0.0266), early-onset BC (P=0.0003) and triple-negative BC (P=0.0066). Notably, 9.4% of the CF group exhibited WBC BRCA1 promoter methylation. In addition, high levels of miR-126 in WBCs were detected in all three groups. The increased level of miR-126 was significantly associated with a lower risk of distant metastasis (P=0.045) in BC, but a higher risk of disease progression and death (P=0.0029) in OC. There was a positive correlation between BRCA1 mRNA and miR-126 levels in the WBCs of all three groups, regardless of BRCA1 promoter methylation status. Notably, circulating miR-126 level was decreased in the BC and OC groups, but not in the CF group. Together, these results suggest the likely involvement of miR-126 in the constitutional methylation of BRCA1 promoter-related malignancies. Therefore, miR-126 may be a candidate biomarker for the early prediction of BC and OC risk in CF BRCA1 methylation carriers.

4.
Mol Carcinog ; 60(11): 784-795, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34473867

RESUMO

Active cancer-associated fibroblasts (CAFs) are major components of the tumor microenvironment, which promote carcinogenesis and modulate response to therapy. Therefore, targeting these cells or reducing their paracrine pro-carcinogenic effects could be of great therapeutic value. To this end, we sought to investigate the effect of eugenol, a natural phenolic molecule, on active breast CAFs. We have shown that decitabine (5-Aza-2'-deoxycytidine, DAC) and eugenol inhibit the expression of the DNA methyltransferase genes DNMT1 and DNMT3A at both the protein and mRNA levels in breast CAF cells. While the effect of eugenol was persistent, DAC had only a transient inhibitory effect on the mRNA level of both DNMT genes. Furthermore, eugenol and DAC suppressed the invasive/migratory and proliferative potential of CAF cells as well as their paracrine pro-carcinogenic effects both in vitro and in humanized orthotopic tumor xenografts. Interestingly, these inhibitory effects of decitabine and eugenol were mediated through E2F1 downregulation. Indeed, ectopic expression of E2F1 upregulated both genes and attenuated the effects of eugenol. Additionally, we provide clear evidence that eugenol, like DAC, strongly modulates the methylation pattern in active CAF cells, through methylating several oncogenes and demethylating various important tumor suppressor genes, which affected their mRNA expression levels. Importantly, the E2F1 promoter was also hypermethylated and the gene downregulated in response to eugenol. Together, these findings show that the active features of breast CAF cells can be normalized through eugenol-dependent targeting of DNMT1/DNMT3A and the consequent modulation in gene methylation.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Fibroblastos Associados a Câncer/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/genética , DNA Metiltransferase 3A/genética , Decitabina/administração & dosagem , Fator de Transcrição E2F1/genética , Eugenol/administração & dosagem , Animais , Neoplasias da Mama/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/efeitos dos fármacos , DNA Metiltransferase 3A/metabolismo , Decitabina/farmacologia , Regulação para Baixo , Sinergismo Farmacológico , Fator de Transcrição E2F1/metabolismo , Eugenol/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Camundongos , Comunicação Parácrina/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Oncol Rep ; 43(3): 827-838, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32020216

RESUMO

Restoration of normal DNA promoter methylation and expression states of cancer­related genes may be an option for the prevention as well as the treatment of several types of cancer. Constitutional promoter methylation of BRCA1 DNA repair associated (BRCA1) gene is linked with a high risk of developing breast and ovarian cancer. Furthermore, hypomethylation of the proto­oncogene Î³ synuclein (SNCG) is associated with the metastasis of breast and ovarian cancer and reduced disease­free survival (DFS). In the present study, we evaluated the potential of curcumin to re­express hypermethylated BRCA1 and to suppress hypomethylated SNCG in triple­negative breast cancer (TNBC) cell line HCC­38, the estrogen receptor­negative/progesterone receptor­negative (ER­/PR­) cell line UACC­3199, and the ER+/PR+ cell line T47D. The cells were treated with 5 and 10 µM curcumin for 6 days and with 5­aza­2'­deoxycytidine (5'­aza­CdR) for 48 h. Methylation­specific PCR and bisulfite pyrosequencing assays were used to assess DNA promoter methylation while gene expression levels were analyzed using quantitative real­time PCR and immunoblotting. We found that curcumin treatment restored BRCA1 gene expression by reducing the DNA promoter methylation level in HCC­38 and UACC­3199 cells and that it suppressed the expression of SNCG by inducing DNA promoter methylation in T47D cells. Notably, 5'­aza­CdR restored BRCA1 gene expression only in UACC­3199, and not in HCC­38 cells. Curcumin­induced hypomethylation of the BRCA1 promoter appears to be realized through the upregulation of the ten­eleven translocation 1 (TET1) gene, whereas curcumin­induced hypermethylation of SNCG may be realized through the upregulation of the DNA methyltransferase 3 (DNMT3) and the downregulation of TET1. Notably, miR­29b was found to be reversely expressed compared to TET1 in curcumin­ and 5'­aza­CdR­treated cells, suggesting its involvement in the regulation of TET1. Overall, our results indicate that curcumin has an intrinsic dual function on DNA promoter methylation. We believe that curcumin may be considered a promising therapeutic option for treating TNBC patients in addition to preventing breast and ovarian cancer, particularly in cancer­free females harboring methylated BRCA1.


Assuntos
Proteína BRCA1/genética , Curcumina/farmacologia , DNA (Citosina-5-)-Metiltransferases/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , gama-Sinucleína/genética , Azacitidina/farmacologia , Linhagem Celular Tumoral , Metilação de DNA/efeitos dos fármacos , DNA Metiltransferase 3A , Intervalo Livre de Doença , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , MicroRNAs/genética , Oxigenases de Função Mista/genética , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
6.
Clin Epigenetics ; 10(1): 99, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30049288

RESUMO

BACKGROUND: Constitutive methylation of tumor suppressor genes are associated with increased cancer risk. However, to date, the question of epimutational transmission of these genes remains unresolved. Here, we studied the potential transmission of BRCA1 and MGMT promoter methylations in mother-newborn pairs. METHODS: A total of 1014 female subjects (cancer-free women, n = 268; delivering women, n = 295; newborn females, n = 302; breast cancer patients, n = 67; ovarian cancer patients, n = 82) were screened for methylation status in white blood cells (WBC) using methylation-specific PCR and bisulfite pyrosequencing assays. In addition, BRCA1 gene expression levels were analyzed by quantitative real-time PCR. RESULTS: We found similar methylation frequencies in newborn and adults for both BRCA1 (9.9 and 9.3%) and MGMT (12.3 and 13.1%). Of the 290 mother-newborn pairs analyzed for promoter methylation, 20 mothers were found to be positive for BRCA1 and 29 for MGMT. Four mother-newborn pairs were positive for methylated BRCA1 (20%) and nine pairs were positive for methylated MGMT (31%). Intriguingly, the delivering women had 26% lower BRCA1 and MGMT methylation frequencies than those of the cancer-free female subjects. BRCA1 was downregulated in both cancer-free woman carriers and breast cancer patients but not in newborn carriers. There was a statistically significant association between the MGMT promoter methylation and late-onset breast cancers. CONCLUSIONS: Our study demonstrates that BRCA1and MGMT epimutations are present from the early life of the carriers. We show the transmission of BRCA1 and MGMT epimutations from mother to daughter. Our data also point at the possible demethylation of BRCA1and MGMT during pregnancy.


Assuntos
Proteína BRCA1/genética , Metilação de DNA , Metilases de Modificação do DNA/genética , Enzimas Reparadoras do DNA/genética , Leucócitos/química , Herança Materna , Neoplasias/genética , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/genética , Epigênese Genética , Feminino , Humanos , Recém-Nascido , Pessoa de Meia-Idade , Neoplasias Ovarianas/genética , Regiões Promotoras Genéticas , Análise de Sequência de DNA
7.
J Taibah Univ Med Sci ; 12(3): 189-193, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31435238

RESUMO

Early onset breast cancer is a common malignancy and cause of death among young women in KSA. In addition, the data from women have demonstrated that most patients present late with an advanced stage. The early detection of this disease would not only save patients' lives but would also have the potential to reduce the budget and the time required for treating and nursing advanced breast cancer patients. This review highlights the risk of developing breast cancer in women with the methylated BRCA1 promoter in their white blood cells and proposes the potential use of this epigenetic modification as a powerful molecular marker for the early detection of breast cancer.

8.
BMC Cancer ; 14: 830, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-25403427

RESUMO

BACKGROUND: BRCA1 promoter methylation has been detected in DNA from peripheral blood cells of both breast cancer patients and cancer-free females. However, the pathological significance of this epigenetic change in white blood cells (WBC) remains an open question. In this study, we hypothesized that if constitutional BRCA1 methylation reflects an elevated risk for developing breast cancer (BC), WBC that harbor methylated BRCA1 in both cancer-free females and BC patients should exhibit similar molecular changes. METHODS: BRCA1 promoter methylation was examined by methylation-specific PCR in WBC from 155 breast cancer patients and 143 cancer-free females. The Human Breast Cancer EpiTect Methyl II Signature PCR Array and The Human Breast Cancer RT2 Profiler™ PCR Array were used to study the methylation status and the expression profile of several breast cancer-related genes, respectively. In addition, we used label-free MS-based technique to study protein expression in plasma. RESULTS: We have shown that 14.2% of BC patients and 9.1% of cancer-free females (carriers) harbored methylated BRCA1 promoter in their WBC. Interestingly, 66.7% of patients harbored methylated BRCA1 promoter in both WBC and tumors. Importantly, we have shown the presence of epigenetic changes in 9 other BC-related genes in WBC of both patients and carriers. Additionally, BRCA1 and 15 other important cancer -related genes were found to be differentially expressed in WBC from patients and carriers as compared to controls. Furthermore, we have shown that the carriers exhibited a unique plasma protein pattern different from those of BC patients and controls, with 10 proteins similarly differentially expressed in patients and carriers as compared to controls. CONCLUSIONS: The present results suggest the presence of a strong link between aberrant methylation of the BRCA1 promoter in WBC and breast cancer -related molecular changes, which indicate the potential predisposition of the carriers for developing breast cancer. This informs the potential use of the aberrant methylation of BRCA1 promoter in WBC as a powerful non-invasive molecular marker for detecting predisposed individuals at a very early age.


Assuntos
Proteína BRCA1/genética , Metilação de DNA , Leucócitos/metabolismo , Regiões Promotoras Genéticas , Transcriptoma , Adolescente , Adulto , Idoso , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Análise por Conglomerados , Epigênese Genética , Feminino , Perfilação da Expressão Gênica , Heterozigoto , Humanos , Glândulas Mamárias Humanas/metabolismo , Pessoa de Meia-Idade , Gradação de Tumores , Adulto Jovem
9.
Int J Oncol ; 39(1): 129-35, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21537840

RESUMO

Early-onset breast cancer is one of the most common malignancies and causes of death among young women, and its incidence is increasing. In the present study, we aimed to investigate the epigenetic modifications of the breast cancer type 1 susceptibility gene (BRCA1) in breast tissues and blood cells derived from women with breast cancer and women without breast cancer. BRCA1 promoter methylation was examined by methylation-specific PCR in 47 breast cancer tissues and in peripheral blood cells derived from 7 breast cancer patients and 73 healthy women. Subsequently, the methylation status of the BRCA1 promoter was confirmed and analyzed at high resolution by sodium bisulfite genomic sequencing. BRCA1 promoter methylation was detected in 13 primary sporadic breast cancer tissues (27.3%) and in 2 blood cell samples derived from breast cancer patients (28.5%). A strong association (p-value, 0.0038) was found between BRCA1 methylation and young age (≤ 40 years) at diagnosis. The BRCA1 promoter was also methylated in blood cells from 8 women without breast cancer (10.9%) and 2 breast cancer patients (28%). The methylation pattern of the BRCA1 promoter CpG island was similar in the blood cells from healthy women as well as in women with breast cancer. Moreover, we report for the first time, the observation of methylation-related mutations leading to the formation of non-CpG methylation, as well as the formation of novel methylated CpG sites in the 5' regulatory region of the BRCA1 gene in the peripheral blood cells from cancer-free women. These results suggest the possible implication of BRCA1 promoter methylation in the early onset of breast cancer and propose the use of this epigenetic modification as a powerful molecular marker for detecting women potentially predisposed to cancer.


Assuntos
Proteína BRCA1/genética , Células Sanguíneas/patologia , Metilação de DNA , Mutação/genética , Regiões Promotoras Genéticas/genética , Adulto , Idade de Início , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Neoplasias da Mama/genética , Ilhas de CpG/genética , Citosina/metabolismo , Epigenômica , Feminino , Ordem dos Genes , Humanos , Pessoa de Meia-Idade , Dados de Sequência Molecular , Adulto Jovem
10.
Mutat Res ; 663(1-2): 60-8, 2009 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-19428371

RESUMO

The Saccharomyces cerevisiae RAD9 and RAD24 are two cell cycle checkpoint genes required for UV-dependent up-regulation of a battery of genes involved in different metabolic pathways. RAD9 is also implicated in nucleotide excision repair (NER); however, its precise role is still unclear. For the present study, we made use of the high-resolution primer extension technique to show that the RAD9-deleted cells are deficient in the repair of both strands of the URA3 gene. Interestingly, this defect was suppressed by over-expressing the RAD24 gene, suggesting that the role of RAD9 in NER is indirect probably through the UV-dependent trans-activation of some NER factors. Accordingly, we present evidence that the inhibition of UV-related de novo protein synthesis by cycloheximide has no effect on the rad9Delta mutant while it suppresses the correcting effect of RAD24 over-expression. Importantly, we have also shown that RAD9 has no role in repair of transcriptionally inactive DNA sequences (URA3 promoter and transcriptionally silent GAL10 gene). Furthermore, de novo protein synthesis was not required for NER in the absence of transcription-coupled NER. This implies that RAD9-dependent gene up-regulation is required for NER only when this process is coupled to transcription.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Reparo do DNA/genética , DNA Fúngico/genética , Genes Fúngicos , Saccharomyces cerevisiae/genética , Transcrição Gênica , Ativação Transcricional/genética , Cicloeximida/farmacologia , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação/genética , Regiões Promotoras Genéticas , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/efeitos da radiação , Dímeros de Pirimidina/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos da radiação , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/efeitos da radiação , Raios Ultravioleta
11.
DNA Repair (Amst) ; 2(11): 1185-97, 2003 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-14599741

RESUMO

DNA damage results in the up-regulation of several genes involved in different cellular physiological processes, such as the nucleotide excision repair (NER) mechanism that copes with a broad range of DNA alterations, including the carcinogenic ultraviolet (UV) light-induced pyrimidine dimers (PDs). There are two NER sub-pathways: transcription coupled repair (TCR) that is specific for the transcribed strands (TS) of active genes and global genomic repair (GGR) that repairs non-transcribed DNA sequences (NTD) and the non-transcribed strands (NTS) of expressed genes. To elucidate the role of UV-dependent de novo protein synthesis in nucleotide excision repair in the budding yeast, we investigated the effect of the protein synthesis inhibitor, cycloheximide, on the removal of PDs. Log phase as well as G(1)-synchronized cells were treated with the drug shortly before UV irradiation and immediately thereafter, and the repair of damaged DNA was assessed with the high resolution primer extension technique. The results show that in both cellular conditions, the inhibition of UV-dependent de novo protein synthesis by cycloheximide impairs the excision repair of the transcriptionally active GAL10 and URA3 genes, with a greater effect on the non-transcribed strands. This indicates that UV-mediated de novo protein synthesis is required for efficient nucleotide excision repair, but not for the preferential repair of the TSs. On the other hand, cycloheximide did not affect the repair of either strand of the repressed GAL10 gene or the non-transcribed promoter region of the URA3 gene, showing that UV-induced de novo protein synthesis is not required for PD removal from transcriptionally inactive DNA sequences. Together, these data show that despite the fact that NTD and NTSs are normally repaired by the GGR sub-pathway, their requirement for UV-dependent de novo protein synthesis is different, which may suggest a difference in the processing of UV lesions in these non-transcribed sequences of the genome.


Assuntos
Reparo do DNA , Proteínas de Saccharomyces cerevisiae/biossíntese , Saccharomyces cerevisiae/genética , Cicloeximida/farmacologia , Dano ao DNA , DNA Fúngico/efeitos da radiação , Inibidores da Síntese de Proteínas/farmacologia , Dímeros de Pirimidina/metabolismo , Proteínas de Saccharomyces cerevisiae/efeitos da radiação , Transcrição Gênica , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA