Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Molecules ; 27(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744792

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle loss, leading to difficulties in movement. Mutations in the DMD gene that code for the protein dystrophin are responsible for the development of DMD disorder, where the synthesis of this protein is completely halted. Therefore, circulating dystrophin protein could be a promising biomarker of DMD disease. Current methods for diagnosing DMD have sensitivity, specificity, and reproducibility limitations. Herein, a quantitative liquid chromatography-tandem spectrometry (LC-MS/MS) technique in multiple reaction monitoring (MRM) mode was designed and validated for accurate dystrophin protein measurement in a dried blood spot (DBS). The method was successfully validated on the basis of international guidelines regarding calibration curves, precision, and accuracy. In addition, patients and healthy controls were used to test the amount of dystrophin protein circulating in DBS samples as a potential biomarker for DMD disorders. DMD patients were found to have considerably lower levels than controls. To the best of our knowledge, this is the first study to report dystrophin levels in DBS through LC-MS/MS as a diagnostic marker for DMD to the proposed MRM method, providing a highly specific and sensitive approach to dystrophin quantification in a DBS that can be applied in DMD screening.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Biomarcadores/metabolismo , Cromatografia Líquida , Distrofina/genética , Humanos , Distrofia Muscular de Duchenne/genética , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem
3.
Brain ; 144(3): 769-780, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33764426

RESUMO

Membrane trafficking is a complex, essential process in eukaryotic cells responsible for protein transport and processing. Deficiencies in vacuolar protein sorting (VPS) proteins, key regulators of trafficking, cause abnormal intracellular segregation of macromolecules and organelles and are linked to human disease. VPS proteins function as part of complexes such as the homotypic fusion and vacuole protein sorting (HOPS) tethering complex, composed of VPS11, VPS16, VPS18, VPS33A, VPS39 and VPS41. The HOPS-specific subunit VPS41 has been reported to promote viability of dopaminergic neurons in Parkinson's disease but to date has not been linked to human disease. Here, we describe five unrelated families with nine affected individuals, all carrying homozygous variants in VPS41 that we show impact protein function. All affected individuals presented with a progressive neurodevelopmental disorder consisting of cognitive impairment, cerebellar atrophy/hypoplasia, motor dysfunction with ataxia and dystonia, and nystagmus. Zebrafish disease modelling supports the involvement of VPS41 dysfunction in the disorder, indicating lysosomal dysregulation throughout the brain and providing support for cerebellar and microglial abnormalities when vps41 was mutated. This provides the first example of human disease linked to the HOPS-specific subunit VPS41 and suggests the importance of HOPS complex activity for cerebellar function.


Assuntos
Ataxia Cerebelar/genética , Predisposição Genética para Doença/genética , Transtornos do Neurodesenvolvimento/genética , Transporte Proteico/genética , Proteínas de Transporte Vesicular/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Variação Genética , Humanos , Masculino , Linhagem , Adulto Jovem , Peixe-Zebra
4.
Front Pediatr ; 9: 629549, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33681102

RESUMO

Background: The coronavirus disease 2019 (COVID-19) pandemic has caused overwhelming challenges in healthcare worldwide. During such an outbreak, some needs of high-risk groups who require regular follow-ups and long-term management are not met. The vulnerable populations include patients with Duchenne muscular dystrophy (DMD). Duchenne muscular dystrophy is characterized by respiratory complications caused by muscle weakness. Hence, patients with this condition are at high risk of severe diseases including COVID-19. Methods: To standardize care and provide optimal treatment to DMD patients in Saudi Arabia during the COVID-19 pandemic, a panel of experts including neurologists and pediatricians consolidated recommendations for healthcare professionals and caregivers. Results: During this pandemic, substituting unnecessary clinic visits with virtual clinic services was highly recommended, if possible, without compromising clinical outcomes. Duchenne muscular dystrophy patients with respiratory complications should be closely monitored, and those with cardiovascular complications must continue taking angiotensin-converting enzyme inhibitors or angiotensin receptor blockers. Moreover, individualized home-based rehabilitation management was preferred. Glucocorticoid and new gene correction therapies should be continued. However, new gene correction therapy must be post-poned in newly diagnosed patients. A multidisciplinary decision was required before the initiation of hydroxychloroquine based on the COVID-19 treatment protocol. Conclusion: COVID-19 has caused challenges and transformed access to health care. However, these limitations have provided opportunities for the health care system to adapt. Further, telemedicine has become a reliable platform for follow-up appointments that should be conducted by a multidisciplinary team including physicians, dieticians, and physical therapists.

5.
Int J Pediatr Adolesc Med ; 8(1): 52-54, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33718579

RESUMO

Recessive congenital methemoglobinemia (RCM) is a rare neurological disorder caused by a deficiency in NADH-CYB5R. RCM has two main types I&II, with cyanosis being the hallmark feature in both. Type-I is a mild form, with cyanosis being the only feature. While type-II is the severe form with prominent neurological symptoms including, dystonia and spasticity. However, the cyanosis is subtle and difficult to appreciate. The cyanosis in RCM is treated with ascorbic-acid or methylene-blue. However, those treatments will not alter the neurological complication. In this paper, we report two cases of RCM type-II in Saudi siblings. They presented with cyanosis at birth; a CO-oximetry was done showing a high level of methemoglobin and a trail of methylene blue was used. The siblings were followed up and showed signs of developmental delay, hypotonia, exaggerated reflex, and seizure. A genetic analysis was requested, which showed missense mutation (c.274 C > T), leading to amino acid substitution; p. Arg92Trp.

6.
Am J Med Genet A ; 185(2): 370-376, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179433

RESUMO

Klippel-Feil syndrome 4 (KFS4; MIM# 616549) is an autosomal recessive disorder caused by biallelic pathogenic variants in MYO18B and comprises, in addition to Klippel-Feil anomaly (KFA), nemaline myopathy, facial dysmorphism, and short stature. We aim to outline the natural history of KFS4 and provide an updated description of its clinical, radiological, laboratory, and molecular findings. We comprehensively analyzed the medical records of 6 Saudi and 1 American patients (including 5 previously unpublished cases) with a molecularly confirmed diagnosis of KFS4. All patients had myopathy of varying severity that followed a slowly progressive or non-progressive course, affecting primarily the proximal musculature of the lower limb although hand involvement with distal arthrogryposis and abnormal interphalangeal creases was also observed. KFA and characteristic dysmorphic features, including ptosis and bulbous nose, were observed in all but two patients. The causal MYO18B variants were a founder NM_032608.5:c.6905C>A; p.(Ser2302*) variant in the Saudi patients (P1-P6) and a novel MYO18B homozygous variant (c.6660_6670del;p.[Arg2220Serfs*74]) in the American Caucasian patient (P7). We report the phenotypic and genetic findings in seven patients with KFS4. We describe the natural history of this disease, confirm myopathy as a universal feature and describe its pattern and progression, and note interesting differences between the phenotypes observed in patients with KFA and those without.


Assuntos
Cardiomiopatias/genética , Síndrome de Klippel-Feil/genética , Miopatias da Nemalina/genética , Miosinas/genética , Proteínas Supressoras de Tumor/genética , Adolescente , Adulto , Artrogripose/complicações , Cardiomiopatias/complicações , Cardiomiopatias/patologia , Criança , Pré-Escolar , Face/anormalidades , Face/patologia , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Lactente , Síndrome de Klippel-Feil/complicações , Síndrome de Klippel-Feil/patologia , Masculino , Anormalidades Musculoesqueléticas/complicações , Anormalidades Musculoesqueléticas/genética , Anormalidades Musculoesqueléticas/patologia , Miopatias da Nemalina/complicações , Miopatias da Nemalina/patologia , Linhagem , Fenótipo , Adulto Jovem
7.
Am J Hum Genet ; 107(5): 963-976, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157009

RESUMO

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Gravidez , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Adulto Jovem
9.
Neuromuscul Disord ; 30(7): 611-615, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32616363

RESUMO

Congenital myasthenic syndrome comprises several genetic disorders that impair neuromuscular junction transmission. Causative mutations occur in at least 30 genes, approximately 6-8% of which are presynaptic. One such gene, VAMP1, encodes vesicle-associated membrane protein-1, which is crucial in the formation and fusion of synaptic vesicles with the presynaptic membrane at the neuromuscular junction. VAMP1 mutations are associated with two main phenotypes: a) autosomal recessive congenital myasthenic syndrome and b) autosomal dominant spastic ataxia 1. We report a girl from a consanguineous Saudi family presenting with hypotonia, developmental delay, feeding difficulties and floppiness since birth. Comprehensive genetic testing revealed a homozygous splicing mutation in VAMP1. RT-PCR confirmed the presence of an aberrant transcript causing skipping of exon 2 in the gene.


Assuntos
Síndromes Miastênicas Congênitas/tratamento farmacológico , Síndromes Miastênicas Congênitas/genética , Brometo de Piridostigmina/uso terapêutico , Proteína 1 Associada à Membrana da Vesícula/genética , Pré-Escolar , Feminino , Humanos , Hipotonia Muscular/etiologia , Mutação/genética
10.
OMICS ; 24(3): 160-171, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32105570

RESUMO

Rett syndrome (RTT) is a severe neurodevelopmental disorder reported worldwide in diverse populations. RTT is diagnosed primarily in females, with clinical findings manifesting early in life. Despite the variable rates across populations, RTT has an estimated prevalence of ∼1 in 10,000 live female births. Among 215 Saudi Arabian patients with neurodevelopmental and autism spectrum disorders, we identified 33 patients with RTT who were subsequently examined by genome-wide transcriptome and mitochondrial genome variations. To the best of our knowledge, this is the first in-depth molecular and multiomics analyses of a large cohort of Saudi RTT cases with a view to informing the underlying mechanisms of this disease that impact many patients and families worldwide. The patients were unrelated, except for 2 affected sisters, and comprised of 25 classic and eight atypical RTT cases. The cases were screened for methyl-CpG binding protein 2 (MECP2), CDKL5, FOXG1, NTNG1, and mitochondrial DNA (mtDNA) variants, as well as copy number variations (CNVs) using a genome-wide experimental strategy. We found that 15 patients (13 classic and two atypical RTT) have MECP2 mutations, 2 of which were novel variants. Two patients had novel FOXG1 and CDKL5 variants (both atypical RTT). Whole mtDNA sequencing of the patients who were MECP2 negative revealed two novel mtDNA variants in two classic RTT patients. Importantly, the whole-transcriptome analysis of our RTT patients' blood and further comparison with previous expression profiling of brain tissue from patients with RTT revealed 77 significantly dysregulated genes. The gene ontology and interaction network analysis indicated potentially critical roles of MAPK9, NDUFA5, ATR, SMARCA5, RPL23, SRSF3, and mitochondrial dysfunction, oxidative stress response and MAPK signaling pathways in the pathogenesis of RTT genes. This study expands our knowledge on RTT disease networks and pathways as well as presents novel mutations and mtDNA alterations in RTT in a population sample that was not previously studied.


Assuntos
Fatores de Transcrição Forkhead/genética , Genoma Mitocondrial , Proteína 2 de Ligação a Metil-CpG/genética , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Síndrome de Rett/genética , Estudos de Casos e Controles , Criança , Pré-Escolar , Variações do Número de Cópias de DNA , Feminino , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Genoma Humano , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Anotação de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Síndrome de Rett/diagnóstico , Síndrome de Rett/metabolismo , Síndrome de Rett/fisiopatologia , Transdução de Sinais , Transcriptoma
11.
Genet Med ; 22(6): 1051-1060, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32055034

RESUMO

PURPOSE: Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS: Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS: In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION: In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Alelos , Síndrome de Bardet-Biedl/genética , Cílios/genética , Ciliopatias/genética , Humanos , Canais de Sódio
12.
Genet Med ; 21(3): 736-742, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30237576

RESUMO

PURPOSE: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. METHODS: Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. CONCLUSIONS: Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.


Assuntos
Doença/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Variação Biológica da População/genética , Criança , Pré-Escolar , Diagnóstico , Técnicas e Procedimentos Diagnósticos , Feminino , Testes Genéticos/normas , Variação Genética , Genótipo , Hereditariedade/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo
13.
Biosens Bioelectron ; 117: 84-90, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29890394

RESUMO

Simultaneous and point-of-care detection of multiple protein biomarkers has significant impact on patient care. Spinal Muscular Atrophy (SMA), Cystic Fibrosis (CF) and Duchenne Muscular Dystrophy (DMD) are well known progressive hereditary disorders associated with increased morbidity as well as mortality. Therefore, rapid detection of biomarkers specific for these three disorders in newborns offers new opportunities for early diagnosis, delaying symptoms and effective treatment. Here, we report the development of a disposable carbon nanofiber (CNF)-based electrochemical immunosensor for simultaneous detection of survival motor neuron 1 (SMN1), cystic fibrosis transmembrane conductance regulator (CFTR) and DMD proteins. The CNF-modified array electrodes were first functionalized by electroreduction of carboxyphenyl diazonium salt. Then, the immunosensor was fabricated by the covalent immobilization of the three antibodies on the working electrodes of the array sensor via carbodiimide (EDC/NHS) chemistry. Simultaneous detection of CFTR, DMD and SMN1 was achieved with high sensitivity and detection limits of 0.9 pg/ml, 0.7 pg/ml and 0.74 pg/ml, respectively. The multiplexed immunosensor has also shown strong selectivity against non-specific proteins. Moreover, high recovery percentage was obtained when the immunosensor was applied in spiked whole blood samples. This voltammetric immunosensor offers cost effective, easy to use, rapid and high throughput potential screening method for these three hereditary disorders using only few drops of blood.


Assuntos
Análise Química do Sangue/instrumentação , Análise Química do Sangue/métodos , Doenças Genéticas Inatas/diagnóstico , Nanofibras/química , Triagem Neonatal/métodos , Carbono/química , Fibrose Cística/sangue , Fibrose Cística/diagnóstico , Regulador de Condutância Transmembrana em Fibrose Cística/análise , Regulador de Condutância Transmembrana em Fibrose Cística/sangue , Doenças Genéticas Inatas/sangue , Humanos , Recém-Nascido , Limite de Detecção , Proteínas Musculares/análise , Proteínas Musculares/sangue , Atrofia Muscular Espinal/diagnóstico , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/diagnóstico , Proteína 1 de Sobrevivência do Neurônio Motor/análise , Proteína 1 de Sobrevivência do Neurônio Motor/sangue
14.
Cerebellum ; 17(3): 276-285, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29196973

RESUMO

The objective of this study was the identification of likely genes and mutations associated with an autosomal recessive (AR) rare spinocerebellar ataxia (SCA) phenotype in two patients with infantile onset, from a consanguineous family. Using genome-wide SNP screening, autozygosity mapping, targeted Sanger sequencing and nextgen sequencing, family segregation analysis, and comprehensive neuropanel, we discovered a novel mutation in SPTBN2. Next, we utilized multiple sequence alignment of amino acids from various species as well as crystal structures provided by protein data bank (PDB# 1WYQ and 1WJM) to model the mutation site and its effect on ß-III-spectrin. Finally, we used various bioinformatic classifiers to determine pathogenicity of the missense variant. A comprehensive clinical and diagnostic workup including radiological exams were performed on the patients as part of routine patient care. The homozygous missense variant (c.1572C>T; p.R414C) detected in exon 2 was fully segregated in the family and absent in a large ethnic cohort as well as publicly available data sets. Our comprehensive targeted sequencing approaches did not reveal any other likely candidate variants or mutations in both patients. The two male siblings presented with delayed motor milestones and cognitive and learning disability. Brain MRI revealed isolated cerebellar atrophy more marked in midline inferior vermis at ages of 3 and 6.5 years. Sequence alignments of the amino acids for ß-III-spectrin indicated that the arginine at 414 is highly conserved among various species and located towards the end of first spectrin repeat domain. Inclusive bioinformatic analysis predicted that the variant is to be damaging and disease causing. In addition to the novel mutation, a brief literature review of the previously reported mutations as well as clinical comparison of the cases were also presented. Our study reviews the previously reported SPTBN2 mutations and cases. Moreover, the novel mutation, p.R414C, adds up to the literature for the infantile-onset form of autosomal recessive ataxia associated with SPTBN2. Previously, few SPTBN2 recessive mutations have been reported in humans. Animal models especially the ß-III-/- mouse model provided insights into early coordination and gait deficit suggestive of loss-of-function. It is expected to see more recessive SPTBN2 mutations appearing in the literature during the upcoming years.


Assuntos
Homozigoto , Mutação , Espectrina/genética , Ataxias Espinocerebelares/genética , Idade de Início , Criança , Pré-Escolar , Consanguinidade , Humanos , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Irmãos , Espectrina/metabolismo , Ataxias Espinocerebelares/diagnóstico por imagem , Ataxias Espinocerebelares/epidemiologia
15.
Transl Neurosci ; 8: 65-69, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28744372

RESUMO

Congenital Myasthenic Syndrome (CMS) is a group of inherited neuromuscular junction disorders caused by defects in several genes. Clinical features include delayed motor milestones, recurrent respiratory illnesses and variable fatigable weakness. The central nervous system involvement is typically not part of the CMS. We report here a Saudi girl with genetically proven Collagen Like Tail Subunit Of Asymmetric Acetylcholinesterase (COLQ) mutation type CMS who has global developmental delay, microcephaly and respiratory failure. We have reviewed the literature regarding COLQ-type CMS and to the best of our knowledge this is the first ever reported association of congenital myasthenia syndrome with microcephaly.

16.
Hum Genet ; 136(8): 921-939, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28600779

RESUMO

In this study, we report the experience of the only reference clinical next-generation sequencing lab in Saudi Arabia with the first 1000 families who span a wide-range of suspected Mendelian phenotypes. A total of 1019 tests were performed in the period of March 2016-December 2016 comprising 972 solo (index only), 14 duo (parents or affected siblings only), and 33 trio (index and parents). Multigene panels accounted for 672 tests, while whole exome sequencing (WES) represented the remaining 347 tests. Pathogenic or likely pathogenic variants that explain the clinical indications were identified in 34% (27% in panels and 43% in exomes), spanning 279 genes and including 165 novel variants. While recessive mutations dominated the landscape of solved cases (71% of mutations, and 97% of which are homozygous), a substantial minority (27%) were solved on the basis of dominant mutations. The highly consanguineous nature of the study population also facilitated homozygosity for many private mutations (only 32.5% of the recessive mutations are founder), as well as the first instances of recessive inheritance of previously assumed strictly dominant disorders (involving ITPR1, VAMP1, MCTP2, and TBP). Surprisingly, however, dual molecular diagnosis was only observed in 1.5% of cases. Finally, we have encountered candidate variants in 75 genes (ABHD6, ACY3, ADGRB2, ADGRG7, AGTPBP1, AHNAK2, AKAP6, ASB3, ATXN1L, C17orf62, CABP1, CCDC186, CCP110, CLSTN2, CNTN3, CNTN5, CTNNA2, CWC22, DMAP1, DMKN, DMXL1, DSCAM, DVL2, ECI1, EP400, EPB41L5, FBXL22, GAP43, GEMIN7, GIT1, GRIK4, GRSF1, GTRP1, HID1, IFNL1, KCNC4, LRRC52, MAP7D3, MCTP2, MED26, MPP7, MRPS35, MTDH, MTMR9, NECAP2, NPAT, NRAP, PAX7, PCNX, PLCH2, PLEKHF1, PTPN12, QKI, RILPL2, RIMKLA, RIMS2, RNF213, ROBO1, SEC16A, SIAH1, SIRT2, SLAIN2, SLC22A20, SMDT1, SRRT, SSTR1, ST20, SYT9, TSPAN6, UBR4, VAMP4, VPS36, WDR59, WDYHV1, and WHSC1) not previously linked to human phenotypes and these are presented to accelerate post-publication matchmaking. Two of these genes were independently mutated in more than one family with similar phenotypes, which substantiates their link to human disease (AKAP6 in intellectual disability and UBR4 in early dementia). If the novel candidate disease genes in this cohort are independently confirmed, the yield of WES will have increased to 83%, which suggests that most "negative" clinical exome tests are unsolved due to interpretation rather than technical limitations.


Assuntos
Exoma , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/epidemiologia , Genoma Humano , Consanguinidade , Feminino , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Homozigoto , Humanos , Masculino , Anotação de Sequência Molecular , Morbidade , Mutação , Fenótipo , Reprodutibilidade dos Testes , Arábia Saudita/epidemiologia , Análise de Sequência de DNA
17.
Clin Dysmorphol ; 22(1): 13-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23211637

RESUMO

In this report, we describe a kindred consisting of five affected males presenting with many of the well-recognized features of Aarskog-Scott syndrome. The diagnosis, which was confirmed by the identification of a novel nonsense mutation of FGD1, was associated with the presence of a symmetric distal arthropathy with electromyographic signs of myopathy. These features should be considered in the evaluation of future patients.


Assuntos
Códon sem Sentido/genética , Nanismo/genética , Doenças Genéticas Ligadas ao Cromossomo X/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Deformidades Congênitas da Mão/genética , Cardiopatias Congênitas/genética , Artropatias/genética , Doenças Musculares/genética , Adolescente , Blefaroptose/genética , Pré-Escolar , Análise Mutacional de DNA , Nanismo/diagnóstico , Eletromiografia , Face/anormalidades , Doenças Genéticas Ligadas ao Cromossomo X/diagnóstico , Genitália Masculina/anormalidades , Deformidades Congênitas da Mão/diagnóstico , Cardiopatias Congênitas/diagnóstico , Humanos , Lactente , Masculino , Adulto Jovem
18.
Pediatr Neurol ; 41(1): 74-6, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19520283

RESUMO

Variant late infantile neuronal ceroid lipofuscinosis is one of the multiethnically prevalent types of neuronal ceroid lipofuscinoses. Reported here are three families representing the first cases from Saudi Arabia, one of them having a novel mutation in the CLN6 gene. The CLN6-related literature is reviewed.


Assuntos
Proteínas de Membrana/genética , Lipofuscinoses Ceroides Neuronais/epidemiologia , Lipofuscinoses Ceroides Neuronais/genética , Criança , Pré-Escolar , Família , Feminino , Humanos , Masculino , Mutação , Arábia Saudita/epidemiologia , Análise de Sequência de DNA
19.
Neurosciences (Riyadh) ; 13(4): 433-6, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21063376

RESUMO

Vanishing white matter disease (VWMD) is an under-diagnosed condition that affects the brains white matter at all ages, especially in the pediatric age group. It belongs to a clinically and genetically heterogeneous group of disorders, collectively known as eukaryotic initiation factor 2B-related disorders. The disorder has been described in different ethnic groups. Here, we describe a case of VWMD from Saudi Arabia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA