Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Molecules ; 28(21)2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37959874

RESUMO

A new series of thiazolyl-pyrazoline derivatives (4a-d, 5a-d 6a, b, 7a-d, 8a, b, and 10a, b) have been designed and synthesized through the combination of thiazole and pyrazoline moieties, starting from the key building blocks pyrazoline carbothioamides (1a-b). These eighteen derivatives have been designed as anticipated EGFR/HER2 dual inhibitors. The efficacy of the developed compounds in inhibiting cell proliferation was assessed using the breast cancer MCF-7 cell line. Among the new synthesized thiazolyl-pyrazolines, compounds 6a, 6b, 10a, and 10b displayed potent anticancer activity toward MCF-7 with IC50 = 4.08, 5.64, 3.37, and 3.54 µM, respectively, when compared with lapatinib (IC50 = 5.88 µM). In addition, enzymatic assays were also run for the most cytotoxic compounds (6a and 6b) toward EGFR and HER2 to demonstrate their dual inhibitory activity. They revealed promising inhibition potency against EGFR with IC50 = 0.024, and 0.005 µM, respectively, whereas their IC50 = 0.047 and 0.022 µM toward HER2, respectively, compared with lapatinib (IC50 = 0.007 and 0.018 µM). Both compounds 6a and 10a induced apoptosis by arresting the cell cycle of the MCF-7 cell line at the G1 and G1/S phases, respectively. Molecular modeling studies for the promising candidates 6a and 10a showed that they formed the essential binding with the crucial amino acids for EGFR and HER2 inhibition, supporting the in vitro assay results. Furthermore, ADMET study predictions were carried out for the compounds in the study.


Assuntos
Antineoplásicos , Inibidores de Proteínas Quinases , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Lapatinib/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores de Proteínas Quinases/química , Antineoplásicos/química , Proliferação de Células , Receptores ErbB/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral
2.
Molecules ; 28(17)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37687256

RESUMO

Two series of pyrazolo[3,4-b]pyridine derivatives, 9a-h and 14a-h, are synthesized and evaluated for their anti-cancer potency towards Hela, MCF7, and HCT-116 cancer cell lines. Compound 9a showed the highest anticancer activity with IC50 = 2.59 µM against Hela when compared with doxorubicin (IC50 = 2.35 µM). Compound 14g revealed cytotoxicity IC50 = 4.66 and 1.98 µM towards MCF7 and HCT-116 compared to doxorubicin with IC50 = 4.57 and 2.11 µM, respectively. Compound 9a exhibited cell cycle arrest at the S phase for Hela, whereas 14g revealed an arresting cell cycle for MCF7 at G2/M phase and an arresting cell cycle at S phase in HCT-116. In addition, 9a induced a significant level of early and late apoptosis in Hela when compared with the control cells, whereas 14g induced an apoptosis in MCF7 and HCT-116, respectively. Compounds 9a (IC50 = 26.44 ± 3.23 µM) and 14g (IC50 = 21.81 ± 2.96 µM) showed good safety profiles on normal cell line WI-38. Compounds 9a and 14g showed good inhibition activity towards CDK2, with IC50 = 1.630 ± 0.009 and 0.460 ± 0.024 µM, respectively, when compared with ribociclib (IC50 = 0.068 ± 0.004). Furthermore, 9a and 14g showed inhibitory activity towards CDK9 with IC50 = 0.262 ± 0.013 and 0.801 ± 0.041 µM, respectively, related to IC50 of ribociclib = 0.050 ± 0.003. Docking study for 9a and 14g exhibited good fitting in the CDK2 and CDK9 active sites.


Assuntos
Analgésicos Opioides , Piridinas , Ciclo Celular , Divisão Celular , Piridinas/farmacologia , Apoptose
3.
J Enzyme Inhib Med Chem ; 38(1): 2250575, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37649381

RESUMO

In this study, new benzothiazole-pyrimidine hybrids (5a-c, 6, 7a-f, and 8-15) were designed and synthesised. Two different functionalities on the pyrimidine moiety of lead compound 4 were subjected to a variety of chemical changes with the goal of creating various functionalities and cyclisation to further elucidate the target structures. The potency of the new molecules was tested against different tuberculosis (TB) strains. The results indicated that compounds 5c, 5b, 12, and 15 (MIC = 0.24-0.98 µg/mL) are highly active against the first-line drug-sensitive strain of Mycobacterium tuberculosis (ATCC 25177). Thereafter, the anti-tubercular activity was evaluated against the two drug-resistant TB strains; ATCC 35822 and RCMB 2674, where, many compounds exhibited good activity with MIC = 0.98-62.5 3 µg/mL and 3.9-62.5 µg/mL, respectively. Compounds 5c and 15 having the highest anti-tubercular efficiency towards sensitive strain, displayed the best activity for the resistant strains by showing the MIC = 0.98 and 1.95 µg/mL for MDR TB, and showing the MIC = 3.9 and 7.81 µg/mL for XDR TB, consecutively. Finally, molecular docking studies were performed for the two most active compounds 5c and 15 to explore their enzymatic inhibitory activities.


Assuntos
Mycobacterium tuberculosis , Simulação de Acoplamento Molecular , Benzotiazóis/farmacologia , Anti-Hipertensivos , Pirimidinas/farmacologia
4.
J Biomol Struct Dyn ; : 1-13, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37505066

RESUMO

The proteolytic enzyme 3 C-like protease (3Clpro or Mpro) is considered the most important target for SARS-CoV-2 which could be attributed to its crucial role in viral maturation and/or replication. Besides, natural phytoconstituents from plant origin are always promising lead compounds in the drug discovery area. Herein, the previously isolated and identified seven compounds from Jasminum humile (J. humile) were examined in vitro and in silico against the SARS-CoV-2 Mpro. First, the Vero E6 cells were utilized to pursue the potential of the investigated compounds (both in fractions and individual isolates) using the MTT assay. The total extract (T1) displayed the most significant activity against SARS-CoV-2 with IC50 = 29.36 µg/mL. Besides, the fractions (Fr1 and Fr3) showed good activity against the SARS-CoV-2 with IC50 values of 70.42, and 73.09 µg/mL, respectively. Then, the SARS-CoV-2 Mpro inhibitory assay was utilized to emphasize the inhibitory potential of the investigated isolates. MJN, JMD, and IJM candidates displayed prominent Mpro inhibitory potentials with IC50 = 30.44, 30.24, and 56.25 µM, respectively. Moreover, molecular docking of the identified seven compounds against the Mpro of SARS-CoV-2 showed that the five secoiridoids achieved superior results. MJN, JSM, IJM, and JMD showed higher affinities towards the Mpro target compared to the co-crystallized antagonist. Furthermore, the most active complexes (MJN, JSM, IJM, and JMD-Mpro) were subjected to MD simulations run for 150 ns and MM-GBSA calculations, compared to the co-crystallized inhibitor (O6K-Mpro). Finally, the SAR study clarified that JMD achieved the best anti-SARS-CoV-2 Mpro activity followed by MJN.Communicated by Ramaswamy H. Sarma.


HIGHLIGHTSSeven isolates from J. humile, besides different extracts, were examined both in vitro and in silico.Anti-SARS-CoV-2 using the MTT assay and anti-SARS-CoV-2 Mpro inhibitory assay were performed.Compounds MJN, JMD, and IJM displayed prominent SARS-CoV-2 Mpro inhibition.Molecular docking, molecular dynamics simulations, and MM-GBSA calculations were carried out.SAR study was conducted on the isolated compounds.

5.
Eur J Med Chem ; 258: 115538, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37321108

RESUMO

Hypoxia, a characteristic feature of solid tumors, develops as a result of excessive cell proliferation and rapid tumor growth exceeding the oxygen supply, and can result in angiogenesis activation, increased invasiveness, aggressiveness, and metastasis, leading to improved tumor survival and suppression of anticancer drug therapeutic impact. SLC-0111, a ureido benzenesulfonamide, is a selective human carbonic anhydrase (hCA) IX inhibitor in clinical trials for the treatment of hypoxic malignancies. Herein, we describe the design and synthesis of novel 6-arylpyridines 8a-l and 9a-d as structural analogues of SLC-0111, in the aim of exploring new selective inhibitors for the cancer-associated hCA IX isoform. The para-fluorophenyl tail in SLC-0111 was replaced by the privileged 6-arylpyridine motif. Moreover, both ortho- and meta-sulfonamide regioisomers, as well as an ethylene extended analogous were developed. All 6-arylpyridine-based SLC-0111 analogues were screened in vitro for their inhibitory potential against a panel of hCAs (hCA I, II, IV and IX isoforms) using stopped-flow CO2 hydrase assay. In addition, the anticancer activity was firstly explored against a panel of 57 cancer cell lines at the USA NCI-Developmental Therapeutic Program. Compound 8g emerged as the best anti-proliferative candidate with mean GI% value equals 44. Accordingly, a cell viability assay (MTS) for 8g was applied on colorectal HCT-116 and HT-29 cancer cell lines as well as on the healthy HUVEC cells. Thereafter, Annexin V-FITC apoptosis detection, cell cycle, TUNEL, and qRT-PCR, colony formation, and wound healing assays were applied to gain mechanistic insights and to understand the behavior of colorectal cancer cells upon the treatment of compound 8g. Also, a molecular docking analysis was conducted to provide in silico insights into the reported hCA IX inhibitory activity and selectivity.


Assuntos
Neoplasias Colorretais , Sulfonamidas , Humanos , Anidrase Carbônica IX/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Sulfonamidas/química , Neoplasias Colorretais/tratamento farmacológico , Inibidores da Anidrase Carbônica/química
6.
J Enzyme Inhib Med Chem ; 38(1): 2202357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37092260

RESUMO

In this article, emulsomes (EMLs) were fabricated to encapsulate the N-(5-nitrothiazol-2-yl)-carboxamido derivatives (3a-3g) in an attempt to improve their biological availability and antiviral activity. Next, both cytotoxicity and anti-SARS-CoV-2 activities of the examined compounds loaded EMLs (F3a-g) were assessed in Vero E6 cells via MTT assay to calculate the CC50 and inhibitory concentration 50 (IC50) values. The most potent 3e-loaded EMLs (F3e) elicited a selectivity index of 18 with an IC50 value of 0.73 µg/mL. Moreover, F3e was selected for further elucidation of a possible mode of action where the results showed that it exhibited a combination of virucidal (>90%), viral adsorption (>80%), and viral replication (>60%) inhibition. Besides, molecular docking and MD simulations towards the SARS-CoV-2 Mpro were performed. Finally, a structure-activity relationship (SAR) study focussed on studying the influence of altering the size, type, and flexibility of the α-substituent to the carboxamide in addition to compound contraction on SARS-CoV-2 activity.HighlightsEmulsomes (EMLs) were fabricated to encapsulate the N-(5-nitrothiazol-2-yl)-carboxamido derivatives (3a-3g).The most potent 3e-loaded EMLs (F3e) showed an IC50 value of 0.73 µg/mL against SARS-CoV-2.F3e exhibited a combination of virucidal (>90%), viral adsorption (>80%), and viral replication (>60%) inhibition.Molecular docking, molecular dynamics (MD) simulations, and MM-GBSA calculations were performed.Structure-activity relationship (SAR) study was discussed to study the influence of altering the size, type, and flexibility of the α-substituent to the carboxamide on the anti-SARS-CoV-2 activity.


Assuntos
COVID-19 , Nanopartículas , Humanos , Simulação de Acoplamento Molecular , SARS-CoV-2 , Antivirais/farmacologia , Simulação de Dinâmica Molecular , Inibidores de Proteases
7.
J Enzyme Inhib Med Chem ; 38(1): 2201407, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37078173

RESUMO

Multiple inhibitions of CA, COX-2 and 5-LOX enzymes has been recognised as a useful strategy for the development of anti-inflammatory drugs that can avoid the disadvantages of using NSAIDs alone. Here, we report new pyridazine-based sulphonamides (5a-c and 7a-f) as potential multi-target anti-inflammatory candidates. First, the furanone heterocycle in the dual CA/COX-2 inhibitor Polmacoxib was replaced with the pyridazinone one. Then, a hydrophobic tail was appended through benzylation of the 3-hydroxyl group of the pyridazinone scaffold to afford benzyloxy pyridazines 5a-c. Furthermore, the structures were adorned with the polar sulphonate functionality, in pyridazine sulphonates 7a-f, that are expected to be engaged in interactions with the hydrophilic half of the CA binding sites. All of the disclosed pyridazinones were tested for inhibitory activities against 4 hCA isoforms (I, II, IX, and XII), as well as against COX-1/2, and 5-LOX. Furthermore, in vivo anti-inflammatory and analgesic effects of pyridazinones 7a and 7b were examined.


Assuntos
Anidrases Carbônicas , Anidrases Carbônicas/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade , Anidrase Carbônica IX/metabolismo , Ciclo-Oxigenase 2/metabolismo , Sulfonamidas/química , Anti-Inflamatórios/farmacologia , Inibidores da Anidrase Carbônica/química , Benzenossulfonamidas
8.
J Enzyme Inhib Med Chem ; 38(1): 2199950, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37080775

RESUMO

Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves. The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS) revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of 1.90 µg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse docking, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and farnesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion, and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both compounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of T. grandifolia leaves.


Assuntos
Acanthaceae , Lignanas , Trypanosoma brucei brucei , Simulação de Acoplamento Molecular , Lignanas/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química
9.
Molecules ; 28(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37049756

RESUMO

Glycyrrhiza glabra and Sophora japonica (Fabaceae) are well-known medicinal plants with valuable secondary metabolites and pharmacological properties. The flavonoid-rich fractions of G. glabra roots and S. japonica leaves were prepared using Diaion column chromatography, and the confirmation of flavonoid richness was confirmed using UPLC-ESI-MS profiling and total phenolics and flavonoids assays. UPLC-ESI-MS profiling of the flavonoid-rich fraction of G. glabra roots and S. japonica leaves resulted in the tentative identification of 32 and 23 compounds, respectively. Additionally, the wound healing potential of topical preparations of each fraction, individually and in combination (1:1) ointment and gel preparations, were investigated in vivo, supported by histopathological examinations and biomarker evaluations, as well as molecular docking studies for the major constituents. The topical application of G. glabra ointment and gel, S. japonica ointment and gel and combination preparations significantly increase the wound healing rate and the reduction of oxidative stress in the wound area via MDA reduction and the elevation of reduced GSH and SOD levels as compared to the wound and Nolaver®-treated groups. The molecular docking study revealed that that major compounds in G. glabra and S. japonica can efficiently bind to the active sites of three proteins related to wound healing: glycogen synthase kinase 3-ß (GSK3-ß), matrix metalloproteinases-8 (MMP-8) and nitric oxide synthase (iNOS). Consequently, G. glabra roots and S. japonica leaves may be a rich source of bioactive metabolites with antioxidant, anti-inflammatory and wound healing properties.


Assuntos
Flavonoides , Glycyrrhiza , Flavonoides/farmacologia , Flavonoides/análise , Sophora japonica , Simulação de Acoplamento Molecular , Quinase 3 da Glicogênio Sintase , Pomadas , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glycyrrhiza/química , Cicatrização
10.
Molecules ; 28(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36903440

RESUMO

The genus Moricandia (Brassicaceae) comprises about eight species that were used in traditional medicine. Moricandia sinaica is used to alleviate certain disorders such as syphilis and exhibits analgesic, anti-inflammatory, antipyretic, antioxidant, and antigenotoxic properties. Throughout this study, we aimed to figure out the chemical composition of lipophilic extract and essential oil obtained from M. sinaica aerial parts using GC/MS analysis, as well as their cytotoxic and antioxidant activities correlated with the major detected compounds' molecular docking. The results revealed that both the lipophilic extract and the oil were found to be rich in aliphatic hydrocarbons, accounting for 72.00% and 79.85%, respectively. Furthermore, the lipophilic extract's major constituents are octacosanol, γ-sitosterol, α-amyrin, ß-amyrin acetate, and α-tocopherol. Contrarily, monoterpenes and sesquiterpenes accounted for the majority of the essential oil. The essential oil and the lipophilic extract of M. sinaica showed cytotoxic properties towards human liver cancer cells (HepG2) with IC50 values of 126.65 and 220.21 µg/mL, respectively. The lipophilic extract revealed antioxidant activity in the DPPH assay with an IC50 value of 2679 ± 128.13 µg/mL and in the FRAP assay, moderate antioxidant potential was expressed as 44.30 ± 3.73 µM Trolox equivalent/mg sample. The molecular docking studies revealed that ꞵ-amyrin acetate, α -tocopherol, γ-sitosterol, and n-pentacosaneachieved the best docking scores for NADPH oxidase, phosphoinositide-3 kinase, and protein kinase B. Consequently, M. sinaica essential oil and lipophilic extract can be employed as a viable management strategy for oxidative stress conditions and the formulation of improved cytotoxic treatment regimens.


Assuntos
Antineoplásicos , Óleos Voláteis , Humanos , Óleos Voláteis/química , Antioxidantes/química , Simulação de Acoplamento Molecular , Extratos Vegetais
11.
Int J Pharm ; 631: 122537, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36572260

RESUMO

Overexpression of two carbonic anhydrase (CA) isoforms, CA IX and XII, in several hypoxic solid tumors provides an extracellular hypoxic microenvironment, interferes with extra- and intracellular pH regulation, thus favoring hypoxic tumor cell survival, proliferation and metastasis. In the current study, a selective inhibitor for human CA isoforms IX and XII (isatin-bearing sulfonamide, WEG-104), was incorporated into nanosized spherical niosomes at high encapsulation efficiency to allow for an enhanced and sustained antitumor activity. In vivo, administration of WEG-104 that is either free (10 mg/kg) or loaded into niosomes (5 mg/kg) into a mice model of Ehrlich ascites solid tumor resulted in comparable efficacy in terms of reduction of tumor weight and volume. Administration of WEG-104-loaded niosomes (10 mg/kg) exhibited superior antitumor activity compared to the free drug, evidenced by reduced tumor weight and volume, marked reduction in the activity of CA IX and XII, and suppression of HIF-1α and MMP-2. Moreover, prominent increase of caspase 3 and pronounced decrease in VEGF immune expression were observed in the treated animals. Hence, loading of molecularly designed compounds that targets CAs in hypoxic solid tumors into nanosized delivery systems provided an auspicious strategy for limiting solid tumor progression and malignancy.


Assuntos
Anidrases Carbônicas , Neoplasias , Camundongos , Animais , Humanos , Inibidores da Anidrase Carbônica/farmacologia , Lipossomos/uso terapêutico , Neoplasias/tratamento farmacológico , Antígenos de Neoplasias , Anidrases Carbônicas/metabolismo , Anidrases Carbônicas/uso terapêutico , Hipóxia/tratamento farmacológico , Microambiente Tumoral
12.
Molecules ; 27(24)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36558111

RESUMO

Psidium guajava (Guava tree) is one of the most widely known species in the family Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase. Moreover, molecular docking of the major identified active sites of the target enzymes were investigated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene (9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol (9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) assays, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g, respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively. The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that the major compounds achieved acceptable binding scores upon docking with the tested enzymes. Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes mellitus diseases.


Assuntos
Óleos Voláteis , Psidium , Antioxidantes/química , Butirilcolinesterase/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Monofenol Mono-Oxigenase , alfa-Glucosidases/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/química , alfa-Amilases
13.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290660

RESUMO

Duranta erecta Linn. has a longstanding history for use in folk remedy for several disorders. Its hydroalcoholic extract has been investigated intensely in the treatment of many ailments, but to date very few data are presented to explain the pharmacological use of its oil. In this study, the chemical profiles of the leaf oils extracted from three Egyptian Duranta erecta cultivars, namely 'Green', 'Golden edge', and 'Variegata' are traced using GC-MS analysis. D. erecta 'Green' showed predominance of vitamin E (22.7%) and thunbergol (15%) whereas D. erecta 'Golden edge' and 'Variegata' contained tetratetracontane as a major component in their oils. The highest phenolic and flavonoid contents, displayed as gallic acid and rutin equivalents per gram oil, respectively, were observed in the 'Golden edge' and 'Variegata' cultivars, which was reflected by their strong DPPH and ABTS scavenging activities as well as the highest reducing power in both CUPRAC and FRAP assays. D. erecta 'Green' displayed better metal chelating potential, which may be attributed to its content of vitamin E. All cultivars showed similar enzyme inhibitory profiles. The best inhibition of α-glucosidase and α-amylase was observed by D. erecta 'Green'. In silico studies of the major constituents docked on the active sites of the target enzymes NADPH oxidase, amylase, glucosidase, butyrylcholinesterase, and tyrosinase revealed high binding scores, which justified the biological activities of the tested oils.

14.
Int J Mol Sci ; 23(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36293094

RESUMO

In this article, 34 anticoagulant drugs were screened in silico against the main protease (Mpro) of SARS-CoV-2 using molecular docking tools. Idraparinux, fondaparinux, eptifibatide, heparin, and ticagrelor demonstrated the highest binding affinities towards SARS-CoV-2 Mpro. A molecular dynamics study at 200 ns was also carried out for the most promising anticoagulants to provide insights into the dynamic and thermodynamic properties of promising compounds. Moreover, a quantum mechanical study was also conducted which helped us to attest to some of the molecular docking and dynamics findings. A biological evaluation (in vitro) of the most promising compounds was also performed by carrying out the MTT cytotoxicity assay and the crystal violet assay in order to assess inhibitory concentration 50 (IC50). It is worth noting that ticagrelor displayed the highest intrinsic potential for the inhibition of SARS-CoV-2 with an IC50 value of 5.60 µM and a safety index of 25.33. In addition, fondaparinux sodium and dabigatran showed promising inhibitory activities with IC50 values of 8.60 and 9.40 µM, respectively, and demonstrated safety indexes of 17.60 and 15.10, respectively. Moreover, the inhibitory potential of the SARS-CoV-2 Mpro enzyme was investigated by utilizing the SARS-CoV-2 Mpro assay and using tipranavir as a reference standard. Interestingly, promising SARS-CoV-2 Mpro inhibitory potential was attained for fondaparinux sodium with an IC50 value of 2.36 µM, surpassing the reference tipranavir (IC50 = 7.38 µM) by more than three-fold. Furthermore, highly eligible SARS-CoV-2 Mpro inhibitory potential was attained for dabigatran with an IC50 value of 10.59 µM. Finally, an SAR was discussed, counting on the findings of both in vitro and in silico approaches.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Simulação de Acoplamento Molecular , Proteases 3C de Coronavírus , Simulação de Dinâmica Molecular , Fondaparinux , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Dabigatrana , Ticagrelor , Eptifibatida , Violeta Genciana , Inibidores de Proteases/química , Proteínas não Estruturais Virais/metabolismo , Heparina/farmacologia , Antivirais/farmacologia , Antivirais/química
15.
J Enzyme Inhib Med Chem ; 37(1): 2256-2264, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36000171

RESUMO

In searching for new molecular drug targets, Carbonic Anhydrases (CAs) have emerged as valuable targets in diverse diseases. CAs play critical functions in maintaining pH and CO2 homeostasis, metabolic pathways, and much more. So, it is becoming attractive for medicinal chemists to design novel inhibitors for this class of enzymes with improved potency and selectivity towards the different isoforms. In the present study, three sets of carboxylic acid derivatives 5a-q, 7a-b and 12a-c were designed, developed and evaluated for the hCA inhibitory effects against hCA I, II, IX and XII. Compounds 5l, 5m, and 5q elicited the highest inhibitory activities against hCA II, IX and XII. In summary, structural rigidification, regioisomerism and structural extension, all played obvious roles in the degree of hCA inhibition. This present work could be a good starting point for the design of more non-classical selective hCA inhibitors as potential targets for several diseases.


Assuntos
Inibidores da Anidrase Carbônica , Anidrases Carbônicas , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Ácidos Carboxílicos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade
16.
Antibiotics (Basel) ; 11(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35884124

RESUMO

Despite the mounting global burden of antimicrobial resistance (AMR), the generation of new classes of effective antimicrobials still lags far behind. The interplay between multidrug resistance and biofilm formation in Acinetobacter baumannii has drastically narrowed the available therapeutic choices. The use of natural compounds holds promise as an alternate option for restoring the activity of existing antibiotics and attenuating virulence traits through reduced biofilm formation. This study aimed to evaluate the modulatory effect of combining cinnamic and gallic acids at ½MIC with various antibiotics against multidrug-resistant (MDR) A. baumannii clinical isolates as well as study the effect on the expression of the biofilm-associated genes (bap, csuE, ompA) via quantitative, real-time PCR. Combining cinnamic or gallic acid with imipenem, amikacin or doxycycline resulted in significant reduction of resistance (p < 0.05). On the contrary, no effect was recorded when both acids were combined with levofloxacin, and only cinnamic acid had a synergistic effect with colistin. The transcriptomic changes of biofilm-related genes in the presence of gallic acid at ½MIC were compared with untreated control samples. The fold expression values proved that gallic acid substantially down-regulated the respective genes in all five strong biofilm formers. Molecular docking studies of gallic and cinnamic acids on target genes revealed good binding affinities and verified the proposed mechanism of action. To the best of our knowledge, this is the first report on the effect of gallic acid on the expression of bap, csuE and ompA genes in A. baumannii, which may permit its use as an adjunct anti-virulence therapeutic strategy.

17.
J Enzyme Inhib Med Chem ; 37(1): 1610-1619, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35642325

RESUMO

Helicobacter pylori can cause chronic gastritis, peptic ulcer, and gastric carcinoma. This study compares chemical composition and anti-H. pylori activity of mandarin leaves and marjoram herb essential oils, and their combined oil. GC/MS analysis of mandarin oil revealed six compounds (100% identified), mainly methyl-N-methyl anthranilate (89.93%), and 13 compounds (93.52% identified) of marjoram oil, mainly trans-sabinene hydrate (36.11%), terpinen-4-ol (17.97%), linalyl acetate (9.18%), and caryophyllene oxide (8.25%)). Marjoram oil (MIC = 11.40 µg/mL) demonstrated higher activity than mandarin oil (MIC = 31.25 µg/mL). The combined oil showed a synergistic effect at MIC of 1.95 µg/mL (same as clarithromycin). In-silico molecular docking on H. pylori urease, CagA, pharmacokinetic and toxicity studies were performed on major compounds from both oils. The best scores were for caryophyllene oxide then linalyl acetate and methyl-N-methyl anthranilate. Compounds revealed high safety and desirable properties. The combined oil can be an excellent candidate to manage H. pylori.


Assuntos
Helicobacter pylori , Óleos Voláteis , Origanum , Cromatografia Gasosa-Espectrometria de Massas , Simulação de Acoplamento Molecular , Óleos Voláteis/química , Óleos Voláteis/farmacologia
18.
Molecules ; 27(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35566250

RESUMO

The underutilized Amaranthus leafy vegetables are a unique basis of pigments such as ß-cyanins, ß-xanthins, and betalains with radical scavenging capacity (RSC). They have abundant phytonutrients and antioxidant components, such as pigments, vitamins, phenolics, and flavonoids. Eight selected genotypes (four genotypes from each species) of underutilized Amaranthus leafy vegetables were evaluated for phytonutrients, pigments, vitamins, phenolics, flavonoids, and antioxidants in a randomized complete block design under ambient field conditions with three replicates. The studied traits showed a wide range of variations across eight genotypes of two species of Amaranthus leafy vegetables. The highest fat, ß-xanthins, K, dietary fiber, Mg, ß-cyanins, Mn, chlorophyll ab, Zn, TP, TF, betalains, chlorophyll a content, and (RSC) (DPPH) and RSC (ABTS+) were obtained from A. tricolor accessions. Conversely, the highest protein, Cu, carbohydrates, Ca, and chlorophyll b content were obtained from A. lividus accessions. The highest dry matter, carotenoids, Fe, energy, and ash were obtained from A. tricolor and A. lividus. The accession AT2 confirmed the highest vit. C and RSC (DPPH) and RSC (ABTS+); AT5 had the highest TP content; and AT12 had the highest TF content. A. tricolor accessions had high phytochemicals across the two species, such as phytopigments, vitamins, phenolics, antioxidants, and flavonoids, with considerable nutrients and protein. Hence, A. tricolor accessions can be used as high-yielding cultivars comprising ample antioxidants. The correlation study revealed that vitamin C, pigments, flavonoids, ß-carotene, and phenolics demonstrated a strong RSC, and showed a substantial contribution to the antioxidant potential (AP) of A. tricolor. The investigation exposed that the accessions displayed a plentiful origin of nutritional values, phytochemicals, and AP with good quenching ability of reactive oxygen species (ROS) that provide enormous prospects for nourishing the mineral-, antioxidant-, and vitamin-threatened community.


Assuntos
Amaranthus , Amaranthus/química , Antioxidantes/química , Betalaínas/metabolismo , Clorofila A/metabolismo , Flavonoides/metabolismo , Compostos Fitoquímicos/metabolismo , Verduras/química , Vitaminas/análise
19.
Eur J Med Chem ; 238: 114412, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35551035

RESUMO

In the current work, we adopted the tail/dual tail approaches to design and synthesize the benzenesulfonamide derivatives 6a-b, 8, 10a-b, 12a-b, 14, and 16 as new SLC-0111 analogs endowed with carbonic anhydrase (CA) inhibitory activity. All the prepared benzenesulfonamide derivatives were tested for their inhibitory action towards hCA isoforms; hCA I, II, IX, and XII. The results revealed their ability to affect the examined isoforms in variable degrees with KI ranges: 49.3-6459 nM for CA I, 5.1-4171 nM for CA II, 9.4-945.1 nM for CA IX, and 5.2-1159 nM for CA XII. As expected, appending a second hydrophilic tail (ethanolamine) in compound 16 significantly enhanced the inhibitory activities towards hCA IX and hCA XII isoforms by about 5-fold in comparison to its single tail analogue 6c (KI = 51.5 and 28.2 nM for 6cvs. 10.2 and 5.2 nM for 16, respectively). Moreover, SAR analysis pointed out the significance of grafting the sulfamoyl functionality at para-position, as well as the incorporation of a bulky hydrophobic tail for CA inhibitory activity. The most potent hCA IX inhibitors (6f and 16) displayed efficient cell growth inhibitory activity against breast cancer cell lines; T-47D (IC50 = 19 and 10.9 µM, respectively) and MCF-7 (IC50 = 7.5 and 5.7 µM, respectively).


Assuntos
Anidrase Carbônica II , Inibidores da Anidrase Carbônica , Antígenos de Neoplasias/metabolismo , Anidrase Carbônica IX/metabolismo , Inibidores da Anidrase Carbônica/química , Inibidores da Anidrase Carbônica/farmacologia , Proliferação de Células , Estrutura Molecular , Relação Estrutura-Atividade , Sulfonamidas , Benzenossulfonamidas
20.
Plants (Basel) ; 11(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35406898

RESUMO

Today, skin care products and cosmetic preparations containing natural ingredients are widely preferred by consumers. Therefore, many cosmetic brands are encouraged to offer more natural products to the market, such as plant extracts that can be used for their antiaging, antiwrinkle, and depigmentation properties and other cosmetic purposes. In the current study, the volatile constituents of the hexane-soluble fraction of a Stenocarpus sinuatus (family Proteaceae) leaf methanol extract (SSHF) were analyzed using GC/MS analysis. Moreover, the antiaging activity of SSHF was evaluated through in vitro studies of anti-collagenase, anti-elastase, anti-tyrosinase, and anti-hyaluronidase activities. In addition, an in silico docking study was carried out to identify the interaction mechanisms of the major compounds in SSHF with the active sites of the target enzymes. Furthermore, an in silico toxicity study of the identified compounds in SSHF was performed. It was revealed that vitamin E (α-tocopherol) was the major constituent of SSHF, representing 52.59% of the extract, followed by γ-sitosterol (8.65%), neophytadiene (8.19%), ß-tocopherol (6.07%), and others. The in vitro studies showed a significant inhibition by SSHF of collagenase, elastase, tyrosinase, and hyaluronidase, with IC50 values of 60.03, 177.5, 67.5, and 38.8 µg/mL, respectively, comparable to those of the positive controls epigallocatechin gallate (ECGC, for collagenase, elastase, hyaluronidase) and kojic acid (for tyrosinase). Additionally, the molecular docking study revealed good acceptable binding scores of the four major compounds, comparable to those of ECGC and kojic acid. Besides, the SSHF identified phytoconstituents showed no predicted potential toxicity nor skin toxicity, as determined in silico. In conclusion, the antiaging potential of SSHF may be attributed to its high content of vitamin E in addition to the synergetic effect of other volatile constituents. Thus, SSHF could be incorporated in pharmaceutical skin care products and cosmetics after further studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA