Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Front Immunol ; 15: 1348010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081324

RESUMO

Background: Defective intestinal epithelial tight junction (TJ), characterized by an increase in intestinal TJ permeability, has been shown to play a critical role in the pathogenesis of inflammatory bowel disease (IBD). Tumor necrosis factor-α (TNF-α) is a key pro-inflammatory cytokine involved in the immunopathology of IBD and has been shown to cause an increase in intestinal epithelial TJ permeability. Although TNF-α antibodies and other biologics have been advanced for use in IBD treatment, these therapies are associated with severe side effects and have limited efficacy, and there is an urgent need for therapies with benign profiles and high therapeutic efficacy. Probiotic bacteria have beneficial effects and are generally safe and represent an important class of potential therapeutic agents in IBD. Lactobacillus acidophilus (LA) is one of the most used probiotics for wide-ranging health benefits, including in gastrointestinal, metabolic, and inflammatory disorders. A specific strain of LA, LA1, was recently demonstrated to have protective and therapeutic effects on the intestinal epithelial TJ barrier. However, the mechanisms of actions of LA1 remain largely unknown. Methods: The primary aim of this study was to investigate microbial-epithelial interactions and novel signaling pathways that regulate the effect of LA1 on TNF-α-induced increase in intestinal epithelial TJ permeability, using cell culture and animal model systems. Results and Conclusion: Pre-treatment of filter-grown Caco-2 monolayers with LA1 prevented the TNF-α-induced increase in intestinal epithelial TJ permeability by inhibiting TNF-α-induced activation of NF-κB p50/p65 and myosin light chain kinase (MLCK) gene and kinase activity in a TLR-2-dependent manner. LA1 produced a TLR-2- and MyD88-dependent activation of NF-κB p50/p65 in immune cells; however, LA1, in intestinal cells, inhibited the NF-κB p50/p65 activation in a TLR-2-dependent but MyD88-independent manner. In addition, LA1 inhibition of NF-κB p50/p65 and MLCK gene was mediated by TLR-2 pathway activation of phosphatidylinositol 3-kinase (PI3K) and IKK-α phosphorylation. Our results demonstrated novel intracellular signaling pathways by which LA1/TLR-2 suppresses the TNF-α pathway activation of NF-κB p50/p65 in intestinal epithelial cells and protects against the TNF-α-induced increase in intestinal epithelial TJ permeability.


Assuntos
Mucosa Intestinal , Lactobacillus acidophilus , NF-kappa B , Fosfatidilinositol 3-Quinases , Probióticos , Junções Íntimas , Receptor 2 Toll-Like , Fator de Necrose Tumoral alfa , Lactobacillus acidophilus/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Junções Íntimas/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/microbiologia , Animais , Probióticos/farmacologia , Receptor 2 Toll-Like/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , NF-kappa B/metabolismo , Camundongos , Permeabilidade , Transdução de Sinais/efeitos dos fármacos , Células CACO-2 , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo
2.
Am J Pathol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885924

RESUMO

Bifidobacterium bifidum strain BB1 causes a strain-specific enhancement in intestinal epithelial tight junction (TJ) barrier. Tumor necrosis factor (TNF)-α induces an increase in intestinal epithelial TJ permeability and promotes intestinal inflammation. The major purpose of this study was to delineate the protective effect of BB1 against the TNF-α-induced increase in intestinal TJ permeability and to unravel the intracellular mechanisms involved. Previously reported, TNF-α produces an increase in intestinal epithelial TJ permeability in Caco-2 monolayers and in mice. The addition of BB1 inhibited the TNF-α increase in Caco-2 intestinal TJ permeability and mouse intestinal permeability in a strain-specific manner. BB1 inhibited the TNF-α-induced increase in intestinal TJ permeability by interfering the with TNF-α-induced enterocyte NF-κB p50/p65 and myosin light chain kinase (MLCK) gene activation. The BB1 protective effect against the TNF-α-induced increase in intestinal permeability was mediated by toll-like receptor-2/toll-like receptor-6 heterodimer complex activation of peroxisome proliferator-activated receptor γ (PPAR-γ) and PPAR-γ pathway inhibition of TNF-α-induced IKK-α activation, which, in turn, resulted in a step-wise inhibition of NF-κB p50/p65, MLCK gene, MLCK kinase activity, and MLCK-induced opening of the TJ barrier. In conclusion, these studies unravel novel intracellular mechanisms of BB1 protection against the TNF-α-induced increase in intestinal TJ permeability. Our data show that BB1 protects against the TNF-α-induced increase in intestinal epithelial TJ permeability via a PPAR-γ-dependent inhibition of NF-κB p50/p65 and MLCK gene activation.

3.
Microbiol Resour Announc ; 13(4): e0067723, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38488370

RESUMO

We present the complete genome sequence of the probiotic strain Lactobacillus acidophilus ATCC 9224. The genome sequence provides a valuable resource for investigating the phylogenetic evolution of this lineage and conducting comparative genomics with other Lactobacillus strains and species.

4.
Curr Dev Nutr ; 7(12): 102026, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38076401

RESUMO

The intestinal tight junction (TJ) barrier is a crucial defense mechanism that prevents the passage of intestinal content into the intestinal wall, tissue, and systemic circulation. A compromised intestinal TJ barrier has been identified as a significant factor in inflammatory bowel disease (IBD), necrotizing enterocolitis, and other gut-related inflammatory conditions. Recent studies have revealed the importance of the probiotic bacterial strains of Bifidobacterium in protecting against intestinal inflammation and IBD pathogenesis via the regulation of intestinal TJ barrier function. Numerous species and strains of Bifidobacterium have been found to regulate TJ proteins and the signaling pathways responsible for maintaining intestinal barrier integrity and permeability. In this review, we provide a summary of recent studies that highlight the regulatory role of Bifidobacterium species and the strain effect on the intestinal TJ barrier. We also discuss the intracellular mechanisms involved in Bifidobacterium modulation of the intestinal barrier and the potential therapeutic efficacy of targeting the barrier function to regulate intestinal inflammation.

7.
Front Immunol ; 12: 767456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34759934

RESUMO

The intestinal epithelial tight junction (TJ) barrier controls the paracellular permeation of contents from the intestinal lumen into the intestinal tissue and systemic circulation. A defective intestinal TJ barrier has been implicated as an important pathogenic factor in inflammatory diseases of the gut including Crohn's disease, ulcerative colitis, necrotizing enterocolitis, and celiac disease. Previous studies have shown that pro-inflammatory cytokines, which are produced during intestinal inflammation, including interleukin-1ß (IL-1ß), tumor necrosis factor-α, and interferon-γ, have important intestinal TJ barrier-modulating actions. Recent studies have shown that the IL-1ß-induced increase in intestinal TJ permeability is an important contributing factor of intestinal inflammation. The IL-1ß-induced increase in intestinal TJ permeability is mediated by regulatory signaling pathways and activation of nuclear transcription factor nuclear factor-κB, myosin light chain kinase gene activation, and post-transcriptional occludin gene modulation by microRNA and contributes to the intestinal inflammatory process. In this review, the regulatory role of IL-1ß on intestinal TJ barrier, the intracellular mechanisms that mediate the IL-1ß modulation of intestinal TJ permeability, and the potential therapeutic targeting of the TJ barrier are discussed.


Assuntos
Permeabilidade da Membrana Celular , Células Epiteliais/metabolismo , Interleucina-1beta/metabolismo , Mucosa Intestinal/metabolismo , Junções Íntimas/metabolismo , Humanos , Mucosa Intestinal/citologia , Moléculas de Adesão Juncional/metabolismo , Modelos Biológicos , Quinase de Cadeia Leve de Miosina/metabolismo , Ocludina/metabolismo
8.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360835

RESUMO

Defective intestinal tight junction (TJ) barrier is a hallmark in the pathogenesis of inflammatory bowel disease (IBD). To date, there are no effective therapies that specifically target the intestinal TJ barrier. Among the various probiotic bacteria, Bifidobacterium, is one of the most widely studied to have beneficial effects on the intestinal TJ barrier. The main purpose of this study was to identify Bifidobacterium species that cause a sustained enhancement in the intestinal epithelial TJ barrier and can be used therapeutically to target the intestinal TJ barrier and to protect against or treat intestinal inflammation. Our results showed that Bifidobacterium bifidum caused a marked, sustained enhancement in the intestinal TJ barrier in Caco-2 monolayers. The Bifidobacterium bifidum effect on TJ barrier was strain-specific, and only the strain designated as BB1 caused a maximal enhancement in TJ barrier function. The mechanism of BB1 enhancement of intestinal TJ barrier required live bacterial cell/enterocyte interaction and was mediated by the BB1 attachment to Toll-like receptor-2 (TLR-2) at the apical membrane surface. The BB1 enhancement of the intestinal epithelial TJ barrier function was mediated by the activation of the p38 kinase pathway, but not the NF-κB signaling pathway. Moreover, the BB1 caused a marked enhancement in mouse intestinal TJ barrier in a TLR-2-dependent manner and protected against dextran sodium sulfate (DSS)-induced increase in mouse colonic permeability, and treated the DSS-induced colitis in a TJ barrier-dependent manner. These studies show that probiotic bacteria BB1 causes a strain-specific enhancement of the intestinal TJ barrier through a novel mechanism involving BB1 attachment to the enterocyte TLR-2 receptor complex and activation of p38 kinase pathway.


Assuntos
Bifidobacterium bifidum/fisiologia , Colite/microbiologia , Mucosa Intestinal/microbiologia , Transdução de Sinais , Junções Íntimas , Receptor 2 Toll-Like/metabolismo , Animais , Células CACO-2 , Colite/prevenção & controle , Humanos , Mucosa Intestinal/metabolismo , Camundongos , NF-kappa B , Permeabilidade , Probióticos
9.
J Allergy Clin Immunol Pract ; 9(10): 3629-3637.e2, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34293501

RESUMO

BACKGROUND: Coronavirus disease-2019 (COVID-19) ranges from asymptomatic to severe. Several comorbidities are associated with worse clinical outcomes. Antibiotic use is common in COVID-19 and penicillin (PCN) allergy can affect antibiotic choice and may influence COVID-19 outcomes. OBJECTIVE: To investigate the impact of PCN allergy label on COVID-19 outcomes. METHODS: For this retrospective, cohort study, a Web-based tool for population cohort research, TriNetX, was used to identify adult COVID-19 patients with and without PCN allergy label. The two cohorts were matched using 1:1 propensity score matching for baseline demographics and conditions associated with risk for severe COVID-19. The 30-day risks for hospitalization, acute respiratory failure, intensive care unit requirement, mechanical ventilation requirement, and mortality were then compared between groups. Because bacterial infection can drive alternative antibiotic regimens, additional analyses focused on patients without bacterial infection. RESULTS: After propensity score matching, each cohort consisted of 13,183 patients. COVID-19 patients with PCN allergy had higher risks for hospitalization (risk ratio [RR] = 1.46; 95% confidence interval [CI], 1.41-1.52) acute respiratory failure (RR = 1.25; 95% CI, 1.19-1.31), intensive care unit requirement (RR = 1.20; 95% CI, 1.08-1.34), and mechanical ventilation (RR = 1.17; 95% CI 1.03-1.32) compared with patients without PCN allergy; however, there was no mortality difference (RR = 1.09; 95% CI, 0.96-1.23). Although the bacterial infection risk was higher in PCN allergic COVID-19 patients, exclusion of patients with bacterial infections yielded similar results. CONCLUSIONS: Penicillin allergic patients have higher risk for worse COVID-19 outcomes and should be considered for risk mitigation strategies.


Assuntos
COVID-19 , Hipersensibilidade a Drogas , Adulto , Estudos de Coortes , Hipersensibilidade a Drogas/epidemiologia , Humanos , Penicilinas , Estudos Retrospectivos , SARS-CoV-2
10.
PLoS One ; 16(4): e0249544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33826658

RESUMO

BACKGROUND: Matrix Metalloproteinase-9 (MMP-9) has been shown to play a key role in mediating inflammation and tissue damage in inflammatory bowel disease (IBD). In patients with IBD, the intestinal tight junction (TJ) barrier is compromised as characterized by an increase in intestinal permeability. MMP-9 is elevated in intestinal tissue, serum and stool of patients with IBD. Previous studies from our laboratory showed that MMP-9 causes an increase in intestinal epithelial TJ permeability and that the MMP-9 induced increase in intestinal permeability is an important pathogenic factor contributing to the development of intestinal inflammation in IBD. However, the intracellular mechanisms that mediate the MMP-9 modulation of intestinal barrier function remain unclear. AIMS: The main aim of this study was to further elucidate the molecular mechanisms involved in MMP-9 induced increase in intestinal epithelial TJ permeability using Caco-2 monolayers as an in-vitro model system. RESULTS: MMP-9 induced increase in Caco-2 TJ permeability was associated with activation and cytoplasmic-to-nuclear translocation of NF-κB p65. Knocking-down NF-κB p65 by siRNA transfection prevented the MMP-9 induced expression of the NF-κB target gene IL-8, myosin light chain kinase (MLCK) protein expression, and subsequently prevented the increase in Caco-2 TJ permeability. In addition, the effect of MMP-9 on Caco-2 intestinal epithelial TJ barrier function was not mediated by apoptosis or necrosis. CONCLUSION: Our data show that the MMP-9 induced disruption of Caco-2 intestinal epithelial TJ barrier function is regulated by NF-κB pathway activation of MLCK.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Junções Íntimas/metabolismo , Células CACO-2 , Permeabilidade da Membrana Celular , Regulação da Expressão Gênica , Humanos , Interleucina-8/metabolismo , Modelos Biológicos , Quinase de Cadeia Leve de Miosina/metabolismo , NF-kappa B/metabolismo
11.
Am J Pathol ; 191(5): 872-884, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33607043

RESUMO

Defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease. To date, no effective therapies that specifically target the intestinal TJ barrier are available. The purpose of this study was to identify probiotic bacterial species or strains that induce a rapid and sustained enhancement of intestinal TJ barrier and protect against the development of intestinal inflammation by targeting the TJ barrier. After high-throughput screening of >20 Lactobacillus and other probiotic bacterial species or strains, a specific strain of Lactobacillus acidophilus, referred to as LA1, uniquely produced a marked enhancement of the intestinal TJ barrier. LA1 attached to the apical membrane surface of intestinal epithelial cells in a Toll-like receptor (TLR)-2-dependent manner and caused a rapid increase in enterocyte TLR-2 membrane expression and TLR-2/TLR-1 and TLR-2/TLR-6 hetero-complex-dependent enhancement in intestinal TJ barrier function. Oral administration of LA1 caused a rapid enhancement in mouse intestinal TJ barrier, protected against a dextran sodium sulfate (DSS) increase in intestinal permeability, and prevented the DSS-induced colitis in a TLR-2- and intestinal TJ barrier-dependent manner. In conclusion, we report for the first time that a specific strain of LA causes a strain-specific enhancement of intestinal TJ barrier through a novel mechanism that involves the TLR-2 receptor complex and protects against the DSS-induced colitis by targeting the intestinal TJ barrier.


Assuntos
Colite/prevenção & controle , Inflamação/prevenção & controle , Lactobacillus acidophilus/fisiologia , Probióticos , Receptor 2 Toll-Like/metabolismo , Animais , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Células Epiteliais/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Receptor 2 Toll-Like/genética
12.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G170-G174, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658620

RESUMO

Defective intestinal tight-junction (TJ) barrier has been implicated in the pathogenesis of inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), and other inflammatory conditions of the gut. The role of microRNAs (miRNA's or miR's) has also been demonstrated in the last two decades in the pathogenesis of IBD and in the regulation of intestinal TJ barrier function. MiRNAs are noncoding regulators of gene expression at the posttranscription level that have an essential role in targeting transcripts encoding proteins of intestinal TJs and their regulators. Many miRNAs have been reported to regulate or deregulate the TJ proteins responsible for the intestinal barrier integrity and intestinal permeability. Many of those miRNAs have been reported to have essential roles in the pathogenesis of IBD. In this mini-review, we summarize the results of studies in the last three years that implicate miRNAs in the defective TJ barrier in relation to IBD. The therapeutic potential of using specific miRNAs to target the intestinal TJ barrier might be of great insight for IBD therapy.


Assuntos
Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , Animais , Humanos , Doenças Inflamatórias Intestinais/metabolismo , MicroRNAs/genética
13.
Gastroenterology ; 159(4): 1375-1389, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32569770

RESUMO

BACKGROUND & AIMS: Defects in the epithelial tight junction (TJ) barrier contribute to development of intestinal inflammation associated with diseases. Interleukin 1 beta (IL1B) increases intestinal permeability in mice. We investigated microRNAs that are regulated by IL1B and their effects on expression of TJ proteins and intestinal permeability. METHODS: We used Targetscan to identify microRNAs that would bind the 3' untranslated region (3'UTR) of occludin mRNA; regions that interacted with microRNAs were predicted using the V-fold server and Assemble2, and 3-dimensional models were created using UCSF Chimera linked with Assemble2. Caco-2 cells were transfected with vectors that express microRNAs, analyzed by immunoblots and real-time polymerase chain reaction (PCR), and grown as monolayers; permeability in response to IL1B was assessed with the marker inulin. Male C57BL/6 mice were given intraperitoneal injections of IL1B and intestinal recycling perfusion was measured; some mice were given dextran sodium sulfate to induce colitis and/or gavage with an antagonist to MIR200C-3p (antagomiR-200C) or the nonspecific antagomiR (control). Intestinal tissues were collected from mice and analyzed by histology and real-time PCR; enterocytes were isolated by laser capture microdissection. We also analyzed colon tissues and organoids from patients with and without ulcerative colitis. RESULTS: Incubation of Caco-2 monolayers with IL1B increased TJ permeability and reduced levels of occludin protein and mRNA without affecting the expression of other transmembrane TJ proteins. Targetscan identified MIR122, MIR200B-3p, and MIR200C-3p, as miRNAs that might bind to the occludin 3'UTR. MIR200C-3p was rapidly increased in Caco-2 cells incubated with IL1B; the antagomiR-200c prevented the IL1B-induced decrease in occludin mRNA and protein and reduced TJ permeability. Administration of IL1B to mice increased small intestinal TJ permeability, compared with mice given vehicle; enterocytes isolated from mice given IL1B had increased expression of MIR200C-3p and decreased levels of occludin messenger RNA (mRNA) and protein. Intestinal tissues from mice with colitis had increased levels of IL1B mRNA and MIR200C-3p and decreased levels of occludin mRNA; gavage of mice with antagomiR-200C reduced levels of MIR200C-3p and prevented the decrease in occludin mRNA and the increase in colonic permeability. Colon tissues and organoids from patients with ulcerative colitis had increased levels of IL1B mRNA and MIR200C-3p compared with healthy controls. Using 3-dimensional molecular modeling and mutational analyses, we identified the nucleotide bases in the occluding mRNA 3'UTR that interact with MIR200C-3p. CONCLUSIONS: Intestine tissues from patients with ulcerative colitis and mice with colitis have increased levels of IL1B mRNA and MIR200C-3p, which reduces expression of occludin by enterocytes and thereby increases TJ permeability. Three-dimensional modeling of the interaction between MIR200C-3p and the occludin mRNA 3'UTR identified sites of interaction. The antagomiR-200C prevents the decrease in occludin in enterocytes and intestine tissues of mice with colitis, maintaining the TJ barrier.


Assuntos
Colite Ulcerativa/patologia , Interleucina-1beta/metabolismo , MicroRNAs/metabolismo , Ocludina/metabolismo , Junções Íntimas/metabolismo , Animais , Células CACO-2 , Técnicas de Cultura de Células , Colite Ulcerativa/etiologia , Colite Ulcerativa/metabolismo , Enterócitos , Humanos , Absorção Intestinal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ocludina/genética , Permeabilidade , RNA Mensageiro/metabolismo , Regulação para Cima
14.
Am J Pathol ; 189(4): 797-812, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30711488

RESUMO

Lipopolysaccharides (LPSs) are a major component of Gram-negative bacterial cell wall and play an important role in promoting intestinal inflammatory responses. Recent studies have shown that physiologically relevant concentrations of LPS (0 to 2000 pg/mL) cause an increase in intestinal epithelial tight junction (TJ) permeability without causing cell death. However, the intracellular pathways and the mechanisms that mediate LPS-induced increase in intestinal TJ permeability remain unclear. The aim was to delineate the intracellular pathways that mediate the LPS-induced increase in intestinal permeability using in vitro and in vivo intestinal epithelial models. LPS-induced increase in intestinal epithelial TJ permeability was preceded by an activation of transforming growth factor-ß-activating kinase-1 (TAK-1) and canonical NF-κB (p50/p65) pathways. The siRNA silencing of TAK-1 inhibited the activation of NF-κB p50/p65. The siRNA silencing of TAK-1 and p65/p50 subunit inhibited the LPS-induced increase in intestinal TJ permeability and the increase in myosin light chain kinase (MLCK) expression, confirming the regulatory role of TAK-1 and NF-κB p65/p50 in up-regulating MLCK expression and the subsequent increase in TJ permeability. The data also showed that toll-like receptor (TLR)-4/myeloid differentiation primary response (MyD)88 pathway was crucial upstream regulator of TAK-1 and NF-κB p50/p65 activation. In conclusion, activation of TAK-1 by the TLR-4/MyD88 signal transduction pathway and MLCK by NF-κB p65/p50 regulates the LPS-induced increase in intestinal epithelial TJ permeability.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Quinase I-kappa B/metabolismo , Mucosa Intestinal/fisiologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Animais , Células CACO-2 , Proteínas de Ligação ao Cálcio/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Quinase I-kappa B/genética , Mucosa Intestinal/efeitos dos fármacos , MAP Quinase Quinase Quinases/genética , Masculino , Camundongos Endogâmicos C57BL , Quinase de Cadeia Leve de Miosina/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Transdução de Sinais , Junções Íntimas/efeitos dos fármacos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo
15.
Am J Physiol Gastrointest Liver Physiol ; 316(2): G278-G290, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30543452

RESUMO

Matrix metalloproteinase-9 (MMP-9) has been implicated as being an important pathogenic factor in inflammatory bowel disease (IBD). MMP-9 is markedly elevated in intestinal tissue of patients with IBD, and IBD patients have a defective intestinal tight-junction (TJ) barrier manifested by an increase in intestinal permeability. The loss of intestinal epithelial barrier function is an important contributing factor in the development and prolongation of intestinal inflammation; however, the role of MMP-9 in intestinal barrier function remains unclear. The purpose of this study was to investigate the effect of MMP-9 on the intestinal epithelial TJ barrier and to delineate the intracellular mechanisms involved by using in vitro (filter-grown Caco-2 monolayers) and in vivo (mouse small intestine recycling perfusion) systems. MMP-9 caused a time- and dose-dependent increase in Caco-2 TJ permeability. MMP-9 also caused an increase in myosin light-chain kinase (MLCK) gene activity, protein expression, and enzymatic activity. The pharmacological MLCK inhibition and siRNA-induced knockdown of MLCK inhibited the MMP-9-induced increase in Caco-2 TJ permeability. MMP-9 caused a rapid activation of the p38 kinase signaling pathway and inhibition of p38 kinase activity prevented the MMP-9-induced increase in MLCK gene activity and the increase in Caco-2 TJ permeability. MMP-9 also caused an increase in mouse intestinal permeability in vivo, which was accompanied by an increase in MLCK expression. The MMP-9-induced increase in mouse intestinal permeability was inhibited in MLCK-deficient mice. These data show for the first time that the MMP-9-induced increase in intestinal TJ permeability in vitro and in vivo was mediated by the p38 kinase signal transduction pathway upregulation of MLCK gene activity and that therapeutic targeting of these pathways can prevent the MMP-9-induced increase in intestinal TJ permeability. NEW & NOTEWORTHY MMP-9 is highly elevated in patients with IBD. IBD patients have compromised intestinal TJ barrier function manifested by an increase in intestinal permeability and intestinal inflammation. This study shows that MMP-9, at clinically achievable concentrations, causes an increase in intestinal TJ permeability in vitro and in vivo. In addition, a MMP-9-induced increase in intestinal TJ permeability was mediated by an increase in MLCK gene and protein expression via the p38 kinase pathway.


Assuntos
Permeabilidade da Membrana Celular/genética , Sistema de Sinalização das MAP Quinases/genética , Metaloproteinase 9 da Matriz/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Células CACO-2 , Células Epiteliais , Humanos , Intestinos/fisiologia , Metaloproteinase 9 da Matriz/genética , Permeabilidade , Junções Íntimas/genética , Junções Íntimas/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Hum Microb J ; 132019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35506046

RESUMO

Background: Acute Coronary Syndrome (ACS) is a leading cause of morbidity and mortality. Perturbed gut- microbiota (dysbiosis) and increased intestinal permeability (leaky-gut) with translocation of bacterial antigens, play critical role in obesity and metabolic syndrome, which are also major ACS risk factors. Additionally, Trimethylamine-N-Oxide (TMAO), a metabolite produced by phylum Proteobacteria in gut is implicated in developing ACS. As Proteobacteria is a major source of translocated antigen lipopolysaccharides (LPS), we hypothesized that ACS patients have leaky-gut condition characterized by dysbiosis with increased Proteobacteria, leading to elevated blood levels of TMAO and LPS. Methods: In a pilot case-control study, we enrolled 19 ACS patients (within 72-h of cardiac events) and 19 healthy-controls. Gut barrier function was determined using lactulose-to-mannitol urinary excretion ratio (L/M ratio). Stool microbiome composition was examined using16S sequencing and predictive functional analysis for LPS biosynthesis pathway by PICRUSt tool. Serum TMAO and LPS levels were measured. Results: ACS patients had increased Gammaproteobacteria compared to controls:1.8 ±3.0 vs. 0.2 ±0.4% (P =0.04). Though Proteobacteria level was increased but not statistically significant: 4.1 ±3.8 vs. 2.1 ±1.7% (P =0.056). L/M-ratio was three times higher in ACS patients; 0.06 ±0.07 vs 0.023 ±0.02, (P =0.014). Surprisingly, there was no difference in the mean serum LPS or TMAO levels. However, PICRUSt analysis indicated increased Proteobacteria population increasingly contributed to LPS biosynthesis in ACS patients only. Conclusions: ACS patients likely to have leaky-gut and perturbed gut microbiota. Further studies are required to precisely define the role of dysbiosis in ACS.

17.
Am J Pathol ; 187(12): 2698-2710, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29157665

RESUMO

Lipopolysaccharides (LPSs) are a major component of the Gram-negative bacterial cell wall and play an important role in mediating intestinal inflammatory responses in inflammatory bowel disease. Although recent studies suggested that physiologically relevant concentrations of LPS (0 to 1 ng/mL) cause an increase in intestinal epithelial tight junction (TJ) permeability, the mechanisms that mediate an LPS-induced increase in intestinal TJ permeability remain unclear. Herein, we show that myosin light chain kinase (MLCK) plays a central role in the LPS-induced increase in TJ permeability. Filter-grown Caco-2 intestinal epithelial monolayers and C57BL/6 mice were used as an in vitro and in vivo intestinal epithelial model system, respectively. LPS caused a dose- and time-dependent increase in MLCK expression and kinase activity in Caco-2 monolayers. The pharmacologic MLCK inhibition and siRNA-induced knock-down of MLCK inhibited the LPS-induced increase in Caco-2 TJ permeability. The LPS increase in TJ permeability was mediated by toll-like receptor 4 (TLR-4)/MyD88 signal-transduction pathway up-regulation of MLCK expression. The LPS-induced increase in mouse intestinal permeability also required an increase in MLCK expression. The LPS-induced increase in intestinal permeability was inhibited in MLCK-/- and TLR-4-/- mice. These data show, for the first time, that the LPS-induced increase in intestinal permeability was mediated by TLR-4/MyD88 signal-transduction pathway up-regulation of MLCK. Therapeutic targeting of these pathways can prevent an LPS-induced increase in intestinal permeability.


Assuntos
Mucosa Intestinal/metabolismo , Lipopolissacarídeos/toxicidade , Fator 88 de Diferenciação Mieloide/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Junções Íntimas/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Células CACO-2 , Humanos , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Junções Íntimas/efeitos dos fármacos
18.
Am J Pathol ; 186(5): 1151-65, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26948423

RESUMO

Tumor necrosis factor (TNF)-α, a key mediator of intestinal inflammation, causes an increase in intestinal epithelial tight junction (TJ) permeability by activating myosin light chain kinase (MLCK; official name MYLK3) gene. However, the precise signaling cascades that mediate the TNF-α-induced activation of MLCK gene and increase in TJ permeability remain unclear. Our aims were to delineate the upstream signaling mechanisms that regulate the TNF-α modulation of intestinal TJ barrier function with the use of in vitro and in vivo intestinal epithelial model systems. TNF-α caused a rapid activation of both canonical and noncanonical NF-κB pathway. NF-κB-inducing kinase (NIK) and mitogen-activated protein kinase kinase-1 (MEKK-1) were activated in response to TNF-α. NIK mediated the TNF-α activation of inhibitory κB kinase (IKK)-α, and MEKK1 mediated the activation of IKK complex, including IKK-ß. NIK/IKK-α axis regulated the activation of both NF-κB p50/p65 and RelB/p52 pathways. Surprisingly, the siRNA induced knockdown of NIK, but not MEKK-1, prevented the TNF-α activation of both NF-κB p50/p65 and RelB/p52 and the increase in intestinal TJ permeability. Moreover, NIK/IKK-α/NF-κB p50/p65 axis mediated the TNF-α-induced MLCK gene activation and the subsequent MLCK increase in intestinal TJ permeability. In conclusion, our data show that NIK/IKK-α/regulates the activation of NF-κB p50/p65 and plays an integral role in the TNF-α-induced activation of MLCK gene and increase in intestinal TJ permeability.


Assuntos
Quinase I-kappa B/metabolismo , MAP Quinase Quinase Quinase 1/metabolismo , NF-kappa B/metabolismo , Junções Íntimas/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Células CACO-2 , Células Cultivadas , Humanos , Intestino Delgado/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/fisiologia , NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/metabolismo , Subunidade p52 de NF-kappa B/metabolismo , Permeabilidade , Regiões Promotoras Genéticas/fisiologia , RNA Interferente Pequeno/metabolismo , Fator de Transcrição RelA/metabolismo , Transfecção , Fator de Necrose Tumoral alfa/farmacologia
19.
Am J Physiol Gastrointest Liver Physiol ; 309(12): G988-97, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26514773

RESUMO

Recent studies have implicated a pathogenic role for matrix metalloproteinases 9 (MMP-9) in inflammatory bowel disease. Although loss of epithelial barrier function has been shown to be a key pathogenic factor for the development of intestinal inflammation, the role of MMP-9 in intestinal barrier function remains unclear. The aim of this study was to investigate the role of MMP-9 in intestinal barrier function and intestinal inflammation. Wild-type (WT) and MMP-9(-/-) mice were subjected to experimental dextran sodium sulfate (DSS) colitis by administration of 3% DSS in drinking water for 7 days. The mouse colonic permeability was measured in vivo by recycling perfusion of the entire colon using fluorescently labeled dextran. The DSS-induced increase in the colonic permeability was accompanied by an increase in intestinal epithelial cell MMP-9 expression in WT mice. The DSS-induced increase in intestinal permeability and the severity of DSS colitis was found to be attenuated in MMP-9(-/-) mice. The colonic protein expression of myosin light chain kinase (MLCK) and phospho-MLC was found to be significantly increased after DSS administration in WT mice but not in MMP-9(-/-) mice. The DSS-induced increase in colonic permeability and colonic inflammation was attenuated in MLCK(-/-) mice and MLCK inhibitor ML-7-treated WT mice. The DSS-induced increase in colonic surface epithelial cell MLCK mRNA was abolished in MMP-9(-/-) mice. Lastly, increased MMP-9 protein expression was detected within the colonic surface epithelial cells in ulcerative colitis cases. These data suggest a role of MMP-9 in modulation of colonic epithelial permeability and inflammation via MLCK.


Assuntos
Colite/enzimologia , Colo/enzimologia , Sulfato de Dextrana , Mucosa Intestinal/enzimologia , Metaloproteinase 9 da Matriz/metabolismo , Junções Íntimas/enzimologia , Animais , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colite/prevenção & controle , Colo/efeitos dos fármacos , Colo/patologia , Modelos Animais de Doenças , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Metaloproteinase 9 da Matriz/análise , Metaloproteinase 9 da Matriz/deficiência , Metaloproteinase 9 da Matriz/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cadeias Leves de Miosina/metabolismo , Quinase de Cadeia Leve de Miosina/antagonistas & inibidores , Quinase de Cadeia Leve de Miosina/genética , Quinase de Cadeia Leve de Miosina/metabolismo , Permeabilidade , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Índice de Gravidade de Doença , Transdução de Sinais , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Fatores de Tempo
20.
J Immunol ; 195(10): 4999-5010, 2015 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-26466961

RESUMO

Gut-derived bacterial LPS plays an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor in necrotizing enterocolitis and inflammatory bowel disease. The defective intestinal tight junction barrier was shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, causes an increase in intestinal tight junction permeability (TJP) via a TLR4-dependent process; however, the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal tight junction barrier using in vitro and in vivo model systems. LPS caused a TLR4-dependent activation of membrane-associated adaptor protein focal adhesion kinase (FAK) in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and -independent pathways. Small interfering RNA silencing of MyD88 prevented an LPS-induced increase in TJP. LPS caused MyD88-dependent activation of IL-1R-associated kinase 4. TLR4, FAK, and MyD88 were colocalized. Small interfering silencing of TLR4 inhibited TLR4-associated FAK activation, and FAK knockdown prevented MyD88 activation. In vivo studies also confirmed that the LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented an LPS-induced increase in intestinal permeability. Additionally, high-dose LPS-induced intestinal inflammation was dependent on the TLR4/FAK/MyD88 signal transduction axis. To our knowledge, our data show for the first time that the LPS-induced increases in intestinal TJP and intestinal inflammation were regulated by TLR4-dependent activation of the FAK/MyD88/IL-1R-associated kinase 4 signaling pathway.


Assuntos
Quinase 1 de Adesão Focal/imunologia , Lipopolissacarídeos/farmacologia , Fator 88 de Diferenciação Mieloide/imunologia , Transdução de Sinais/efeitos dos fármacos , Junções Íntimas/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Células CACO-2 , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Quinase 1 de Adesão Focal/genética , Humanos , Intestinos/imunologia , Camundongos , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Permeabilidade/efeitos dos fármacos , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Junções Íntimas/genética , Receptor 4 Toll-Like/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA