Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Physiol ; 602(2): 333-354, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38186087

RESUMO

Some residues in the cystic fibrosis transmembrane conductance regulator (CFTR) channel are the site of more than one CFTR variant that cause cystic fibrosis. Here, we investigated the function of S1159F and S1159P, two variants associated with different clinical phenotypes, which affect the same pore-lining residue in transmembrane segment 12 that are both strongly potentiated by ivacaftor when expressed in CFBE41o- bronchial epithelial cells. To study the single-channel behaviour of CFTR, we applied the patch-clamp technique to Chinese hamster ovary cells heterologously expressing CFTR variants incubated at 27°C to enhance channel residence at the plasma membrane. S1159F- and S1159P-CFTR formed Cl- channels activated by cAMP-dependent phosphorylation and gated by ATP that exhibited thermostability at 37°C. Both variants modestly reduced the single-channel conductance of CFTR. By severely attenuating channel gating, S1159F- and S1159P-CFTR reduced the open probability (Po ) of wild-type CFTR by ≥75% at ATP (1 mM); S1159F-CFTR caused the greater decrease in Po consistent with its more severe clinical phenotype. Ivacaftor (10-100 nM) doubled the Po of both CFTR variants without restoring Po values to wild-type levels, but concomitantly, ivacaftor decreased current flow through open channels. For S1159F-CFTR, the reduction of current flow was marked at high (supersaturated) ivacaftor concentrations (0.5-1 µM) and voltage-independent, identifying an additional detrimental action of elevated ivacaftor concentrations. In conclusion, S1159F and S1159P are gating variants, which also affect CFTR processing and conduction, but not stability, necessitating the use of combinations of CFTR modulators to optimally restore their channel activity. KEY POINTS: Dysfunction of the ion channel cystic fibrosis transmembrane conductance regulator (CFTR) causes the genetic disease cystic fibrosis (CF). This study investigated two rare pathogenic CFTR variants, S1159F and S1159P, which affect the same amino acid in CFTR, to understand the molecular basis of disease and response to the CFTR-targeted therapy ivacaftor. Both rare variants diminished CFTR function by modestly reducing current flow through the channel and severely inhibiting ATP-dependent channel gating with S1159F exerting the stronger adverse effect, which correlates with its association with more severe disease. Ivacaftor potentiated channel gating by both rare variants without restoring their activity to wild-type levels, but concurrently reduced current flow through open channels, particularly those of S1159F-CFTR. Our data demonstrate that S1159F and S1159P cause CFTR dysfunction by multiple mechanisms that require combinations of CFTR-targeted therapies to fully restore channel function.


Assuntos
Fibrose Cística , Quinolonas , Cricetinae , Animais , Humanos , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células CHO , Cricetulus , Aminoácidos , Ativação do Canal Iônico , Aminofenóis/farmacologia , Trifosfato de Adenosina/metabolismo
2.
Physiol Rep ; 10(14): e15341, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35854468

RESUMO

Long QT syndrome type II (LQT2) is caused by loss-of-function mutations in the hERG K+ channel, leading to increased incidence of cardiac arrest and sudden death. Many genetic variants have been reported in the hERG gene with various consequences on channel expression, permeation, and gating. Only a small number of LQT2 causing variants has been characterized to define the underlying pathophysiological causes of the disease. We sought to determine the characteristics of the frameshift variant p.Thr1019ProfsX38 (T1019PfsX38) which affects the C-terminus of the protein. This mutation was identified in an extended Omani family of LQT2. It replaces the last 140 amino acids of hERG with 37 unique amino acids. T1019 is positioned at a distinguished region of the C-terminal tail of hERG, as predicted from the deep learning system AlphaFold v2.0. We employed the whole-cell configuration of the patch-clamp technique to study wild-type and mutant channels that were transiently expressed in human embryonic kidney 293 (HEK293) cells. Depolarizing voltages elicited slowly deactivating tail currents that appeared upon repolarization of cells that express either wild-type- or T1019PfsX38-hERG. There were no differences in the voltage and time dependencies of activation between the two variants. However, the rates of hERG channel deactivation at hyperpolarizing potentials were accelerated by T1019PfsX38. In addition, the voltage dependence of inactivation of T1019PfsX38-hERG was shifted by 20 mV in the negative direction when compared with wild-type hERG. The rates of channel inactivation were increased in the mutant channel variant. Next, we employed a step-ramp protocol to mimic membrane repolarization by the cardiac action potential. The amplitudes of outward currents and their integrals were reduced in the mutant variant when compared with the wild-type variant during repolarization. Thus, changes in the gating dynamics of hERG by the T1019PfsX38 variant contribute to the pathology seen in affected LQT2 patients.


Assuntos
Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Aminoácidos , Canal de Potássio ERG1/genética , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/genética , Canais de Potássio Éter-A-Go-Go/metabolismo , Células HEK293 , Humanos , Potássio/metabolismo
3.
Int J Infect Dis ; 104: 139-149, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33359061

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been proven to be lethal to human health, which affects almost every corner of the world. The objectives of this study were to add context to the global data and international genomic consortiums, and to give insight into the efficiency of the contact tracing system in Oman. METHODS: We combined epidemiological data and whole-genome sequence data from 94 samples of SARS-CoV-2 in Oman to understand the origins, genetic variation, and transmissibility. The whole-genome size of sequence data was obtained through a customized SARS-COV-2 research panel. Amplifier methods ranged from 26 Kbp to 30 Kbp and were submitted to GISAID. FINDINGS: The study found that P323L (94.7%) is the most common mutation, followed by D614G (92.6%) Spike protein mutation. A unique mutation, I280V, was first reported in Oman and was associated with a rare lineage, B.1.113 (10.6%). In addition, the study revealed a good agreement between genetic and epidemiological data. INTERPRETATION: Oman's robust surveillance system was very efficient in guiding the outbreak investigation processes in the country, the study illustrates the future importance of molecular epidemiology in leading the national response to outbreaks and pandemics.


Assuntos
COVID-19/epidemiologia , Genoma Viral/genética , Pandemias , SARS-CoV-2/genética , Adolescente , Adulto , COVID-19/transmissão , COVID-19/virologia , Criança , Pré-Escolar , Monitoramento Epidemiológico , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Epidemiologia Molecular , Mutação , Omã/epidemiologia , Filogenia , SARS-CoV-2/isolamento & purificação , Sequenciamento Completo do Genoma , Adulto Jovem
4.
Oman Med J ; 30(1): 17-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25829996

RESUMO

OBJECTIVE: Our study aimed to develop a survey that could be used by nurses during regular cystic fibrosis (CF) clinic visits, providing clinicians with a standardized means of longitudinally assessing and monitoring symptom progression in their patients. In addition, the use of this survey would provide an opportunity for patient engagement and relationship building, thereby enhancing patient education and improving adherence to treatment. This is the first such survey designed specifically for use in Arab populations. . METHODS: The Cystic Fibrosis Symptom Progression Survey (CF-SPS) was developed using previously published patient reported outcomes relating to pulmonary exacerbations in CF. It contains 10 items that provide a patient-focused account of symptoms. The survey was translated into Arabic and was completed by 12 patients on 139 occasions over 22 months. The psychometric properties of the survey were evaluated, as was the relationship between the survey findings and other known clinical measures of health status in CF. . RESULTS: The CF-SPS performs well as a psychometrically valid clinical tool, with good internal consistency as determined by Cronbach's alpha analysis. Our results suggest that the CF-SPS is able to identify significant declines in health status in line with routine clinical patient assessment (chest sounds, body mass index and admissions). As such it is a useful tool that can support clinical decision making in the care of Arabic speaking CF patients. . CONCLUSION: We recommend the CF-SPSa (Arabic version) as a valid tool for the longitudinal monitoring of symptom progression in CF in Arabic speaking populations.

5.
Sultan Qaboos Univ Med J ; 14(3): e323-9, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25097766

RESUMO

OBJECTIVES: Cystic fibrosis transmembrane conductance regulator (CFTR) mutations form distinct mutational panels in different populations and subgroups. The frequency of cystic fibrosis (CF) mutations and prevalence are unknown in Oman. This study aimed to elucidate the mutational panel and prevalence of CF for the North Al Batinah (NAB) region in Oman and to estimate the national prevalence of CF based on the carrier screening of unrelated volunteers. METHODS: The study included retrospective and prospective analyses of CF cases in the NAB region for 1998-2012. Genetic analysis of disease-causing mutations was conducted by screening of the entire coding sequence and exon-intron borders. The obtained mutational panel was used for the carrier screening of 408 alleles of unrelated and unaffected Omani individuals. RESULTS: S549R and F508del were the major mutations, accounting for 89% of mutations in the patient population. Two private mutations, c.1733-1734delTA and c.1175T>G, were identified in the patient cohort. Two carriers, one for F508del and another for S549R, were identified by screening of the volunteer cohort, resulting in a predicted prevalence for Oman of 1 in 8,264. The estimated carrier frequency of CF in Oman was 1 in 94. The carrier frequency in the NAB region was 3.9 times higher. CONCLUSION: The mutational panel for the NAB region and the high proportion of S549R mutations emphasises the need for specific screening for CF in Oman. The different distribution of allele frequencies suggests a spatial clustering of CF in the NAB region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA