Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Death Discov ; 10(1): 225, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724504

RESUMO

Non-melanoma skin cancer (NMSC), encompassing basal and squamous cell carcinoma, is the most prevalent cancer in the United States. While surgical removal remains the conventional therapy with a 95% 5-year cure rate, there is a growing interest in exploring alternative treatment strategies. In this study, we investigated the role of Bortezomib (BTZ), a proteasome inhibitor, in NMSC. Using two NMSC cell lines (A431 and A388), we examined the effects of BTZ treatment. Our results demonstrated that 48 h of BTZ treatment led to downregulating Skp2 expression in both A431 and A388 cells while upregulating p53 expression, specifically in A388 cells. These alterations resulted in impaired cellular growth and caspase-dependent cell death. Silencing Skp2 in A388 cells with siRNA confirmed the upregulation of p53 as a direct target. Furthermore, BTZ treatment increased the Bax to Bcl-2 ratio, promoting mitochondrial permeability and the subsequent release of cytochrome C, thereby activating caspases. We also found that BTZ exerted its antitumor effects by generating reactive oxygen species (ROS), as blocking ROS production significantly reduced BTZ-induced apoptotic cell death. Interestingly, BTZ treatment induced autophagy, which is evident from the increased expression of microtubule-associated proteins nucleoporin p62 and LC-3A/B. In addition to cell lines, we assessed the impact of BTZ in an in vivo setting using Caenorhabditis elegans (C. elegans). Our findings demonstrated that BTZ induced germline apoptosis in worms even at low concentrations. Notably, this increased apoptosis was mediated through the activity of CEP-1, the worm's counterpart to mammalian p53. In summary, our study elucidated the molecular mechanism underlying BTZ-induced apoptosis in NMSC cell lines and C. elegans. By targeting the skp2/p53 axis, inducing mitochondrial permeability, generating ROS, and promoting autophagy, BTZ demonstrates promising anti-cancer activity in NMSC. These findings provide novel insights into potential therapeutic strategies for controlling the unregulated growth of NMSC.

2.
Obes Rev ; : e13766, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745386

RESUMO

Obesity stands as a formidable global health challenge, predisposing individuals to a plethora of chronic illnesses such as cardiovascular disease, diabetes, and cancer. A confluence of genetic polymorphisms, suboptimal dietary choices, and sedentary lifestyles significantly contribute to the elevated incidence of obesity. This multifaceted health issue profoundly disrupts homeostatic equilibrium at both organismal and cellular levels, with marked alterations in gut permeability as a salient consequence. The intricate mechanisms underlying these alterations have yet to be fully elucidated. Still, evidence suggests that heightened inflammatory cytokine levels and the remodeling of tight junction (TJ) proteins, particularly claudins, play a pivotal role in the manifestation of epithelial barrier dysfunction in obesity. Strategic targeting of proteins implicated in these pathways and metabolites such as short-chain fatty acids presents a promising intervention for restoring barrier functionality among individuals with obesity. Nonetheless, recognizing the heterogeneity among affected individuals is paramount; personalized medical interventions or dietary regimens tailored to specific genetic backgrounds and allergy profiles may prove indispensable. This comprehensive review delves into the nexus of obesity, tight junction remodeling, and barrier dysfunction, offering a critical appraisal of potential therapeutic interventions.

3.
Signal Transduct Target Ther ; 9(1): 27, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38311623

RESUMO

Extracellular vesicles (EVs) are nano-sized, membranous structures secreted into the extracellular space. They exhibit diverse sizes, contents, and surface markers and are ubiquitously released from cells under normal and pathological conditions. Human serum is a rich source of these EVs, though their isolation from serum proteins and non-EV lipid particles poses challenges. These vesicles transport various cellular components such as proteins, mRNAs, miRNAs, DNA, and lipids across distances, influencing numerous physiological and pathological events, including those within the tumor microenvironment (TME). Their pivotal roles in cellular communication make EVs promising candidates for therapeutic agents, drug delivery systems, and disease biomarkers. Especially in cancer diagnostics, EV detection can pave the way for early identification and offers potential as diagnostic biomarkers. Moreover, various EV subtypes are emerging as targeted drug delivery tools, highlighting their potential clinical significance. The need for non-invasive biomarkers to monitor biological processes for diagnostic and therapeutic purposes remains unfulfilled. Tapping into the unique composition of EVs could unlock advanced diagnostic and therapeutic avenues in the future. In this review, we discuss in detail the roles of EVs across various conditions, including cancers (encompassing head and neck, lung, gastric, breast, and hepatocellular carcinoma), neurodegenerative disorders, diabetes, viral infections, autoimmune and renal diseases, emphasizing the potential advancements in molecular diagnostics and drug delivery.


Assuntos
Vesículas Extracelulares , MicroRNAs , Neoplasias , Viroses , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , MicroRNAs/metabolismo , Biomarcadores , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral
4.
Heliyon ; 9(1): e12698, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36632095

RESUMO

Healthy diet is vital to cellular health. The human body succumbs to numerous diseases which afflict severe economic and psychological burdens on the patient and family. Oxidative stress is a possible crucial regulator of various pathologies, including type 2 diabetes and neurodegenerative diseases. It generates reactive oxygen species (ROS) that trigger the dysregulation of essential cellular functions, ultimately affecting cellular health and homeostasis. However, lower levels of ROS can be advantageous and are implicated in a variety of signaling pathways. Due to this dichotomy, the terms oxidative "eustress," which refers to a good oxidative event, and "distress," which can be hazardous, have developed. ROS affects multiple signaling pathways, leading to compromised insulin secretion, insulin resistance, and ß-cell dysfunction in diabetes. ROS is also associated with increased mitochondrial dysfunction and neuroinflammation, aggravating neurodegenerative conditions in the body, particularly with age. Treatment includes drugs/therapies often associated with dependence, side effects including non-selectivity, and possible toxicity, particularly in the long run. It is imperative to explore alternative medicines as an adjunct therapy, utilizing natural remedies/resources to avoid all the possible harms. Antioxidants are vital components of our body that fight disease by reducing oxidative stress or nullifying the excess toxic free radicals produced under various pathological conditions. In this review, we focus on the antioxidant effects of components of dietary foods such as tea, coffee, wine, oils, and honey and the role and mechanism of action of these antioxidants in alleviating type 2 diabetes and neurodegenerative disorders. We aim to provide information about possible alternatives to drug treatments used alone or combined to reduce drug intake and encourage the consumption of natural ingredients at doses adequate to promote health and combat pathologies while reducing unwanted risks and side effects.

5.
Molecules ; 27(13)2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35807283

RESUMO

Obesity is a chronic disease with increasing cases among children and adolescents. Melanocortin 4 receptor (MC4R) is a G protein-coupled transporter involved in solute transport, enabling it to maintain cellular homeostasis. MC4R mutations are associated with early-onset severe obesity, and the identification of potential pathological variants is crucial for the clinical management of patients with obesity. A number of mutations have been reported in MC4R that are responsible for causing obesity and related complications. Delineating these mutations and analyzing their effect on MC4R's structure will help in the clinical intervention of the disease condition as well as designing potential drugs against it. Sequence-based pathogenicity and structure-based protein stability analyses were conducted on naturally occurring variants. We used computational tools to analyze the conservation of these mutations on MC4R's structure to map the structural variations. Detailed structural analyses were carried out for the active site mutations (i.e., D122N, D126Y, and S188L) and their influence on the binding of calcium and the agonist or antagonist. We performed molecular dynamics (MD) simulations of the wild-type and selected mutations to delineate the conformational changes, which provided us with possible reasons for MC4R's instability in these mutations. This study provides insight into the potential direction toward understanding the molecular basis of MC4R dysfunction in disease progression and obesity.


Assuntos
Obesidade , Receptor Tipo 4 de Melanocortina , Adolescente , Sequência de Aminoácidos , Criança , Humanos , Mutação , Obesidade/genética , Obesidade/metabolismo , Conformação Proteica , Receptor Tipo 4 de Melanocortina/química , Receptor Tipo 4 de Melanocortina/genética , Relação Estrutura-Atividade
6.
J Hum Genet ; 67(10): 579-588, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35718832

RESUMO

While de novo mutations (DNMs) are key to genetic diversity, they are also responsible for a high number of rare disorders. To date, no study has systematically examined the rate and distribution of DNMs in multiplex families in highly consanguineous populations. Leveraging WGS profiles of 645 individuals in 146 families, we implemented a combinatorial approach using 3 complementary tools for DNM discovery in 353 unique trio combinations. We found a total of 27,168 DNMs (median: 70 single-nucleotide and 6 insertion-deletions per individual). Phasing revealed around 80% of DNMs were paternal in origin. Notably, using whole-genome methylation data of spermatogonial stem cells, these DNMs were significantly more likely to occur at highly methylated CpGs (OR: 2.03; p value = 6.62 × 10-11). We then examined the effects of consanguinity and ethnicity on DNMs, and found that consanguinity does not seem to correlate with DNM rate, and special attention has to be considered while measuring such a correlation. Additionally, we found that Middle-Eastern families with Arab ancestry had fewer DNMs than African families, although not significant (p value = 0.16). Finally, for families with diseased probands, we examined the difference in DNM counts and putative impact across affected and unaffected siblings, but did not find significant differences between disease groups, likely owing to the enrichment for recessive disorders in this part of the world, or the small sample size per clinical condition. This study serves as a reference for DNM discovery in multiplex families from the globally under-represented populations of the Middle-East.


Assuntos
Família , Mutação INDEL , Consanguinidade , Humanos , Oriente Médio , Mutação , Nucleotídeos
7.
Artigo em Inglês | MEDLINE | ID: mdl-35732499

RESUMO

Mandibulofacial dysostosis with microcephaly (MFDM) is a rare genetic disorder inherited in an autosomal dominant pattern. Major characteristics include developmental delay, craniofacial malformations such as malar and mandibular hypoplasia, and ear anomalies. Here, we report a 4.5-yr-old female patient with symptoms fitting MFDM. Using whole-genome sequencing, we identified a de novo start-codon loss (c.3G > T) in the EFTUD2 We examined EFTUD2 expression in the patient by RNA sequencing and observed a notable functional consequence of the variant on gene expression in the patient. We identified a novel variant for the development of MFDM in humans. To the best of our knowledge, this is the first report of a start-codon loss in EFTUD2 associated with MFDM.


Assuntos
Disostose Mandibulofacial , Microcefalia , Códon , Feminino , Humanos , Disostose Mandibulofacial/diagnóstico , Disostose Mandibulofacial/genética , Microcefalia/genética , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética
8.
Eur J Med Genet ; 65(4): 104455, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35182808

RESUMO

Rare deletions and duplications on the long arm of Chromosome 21 have previously been reported in many patients with craniofacial and developmental phenotypes. However, this Down Syndrome Critical Region (DSCR) contains multiple genes, making identifying a single causative gene difficult. Here, we report a case of a boy with bicoronal craniosynostosis, facial dysmorphism, developmental delay, and intellectual impairment who was found by whole genome sequencing to have a homozygous missense mutation in the Single-Minded Homolog 2 (SIM2) gene (c.461 A > G, p.Tyr154Cys) within the DSCR. SIM2 encodes an essential bHLH and PAS domain transcription factor expressed during fetal brain development and acts as a master regulator of neurogenesis. This variant is globally very rare, segregates in the family, and is predicted to be highly deleterious by in silico analysis, 3D molecular modeling of protein structure, and functional analysis of zebrafish models. Zebrafish expressing the human SIM2p.Y154C variant displayed a progressed microcephaly-like phenotype and head shape abnormalities. When combined with careful phenotyping of the patient vis-à-vis previously reported cases harboring structural variants in this critical 21q22 region, the data support a pathogenic role of SIM2 in this complex syndrome and demonstrates the utility of next-generation sequencing in prioritizing genes in contiguous deletions/duplications syndromes and diagnosing microarray-negative patients in the craniofacial clinic.


Assuntos
Anormalidades Craniofaciais , Síndrome de Down , Deficiência Intelectual , Microcefalia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Homozigoto , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Microcefalia/genética , Fenótipo , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA