Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Manage ; 360: 121087, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735071

RESUMO

Climate change has significantly altered the characteristics of climate zones, posing considerable challenges to ecosystems and biodiversity, particularly in Borneo, known for its high species density per unit area. This study aimed to classify the region into homogeneous climate groups based on long-term average behavior. The most effective parameters from the high-resolution daily gridded Princeton climate datasets spanning 65 years (1950-2014) were utilized, including rainfall, relative humidity (RH), temperatures (Tavg, Tmin, Tmax, and diurnal temperature range (DTR)), along with elevation data at 0.25° resolution. The FCM clustering method outperformed K-Mean and two Ward's hierarchical methods (WardD and WardD2) in classifying Borneo's climate zones based on multi-criteria assessment, exhibiting the lowest average distance (2.172-2.180) and the highest compromise programming index (CPI)-based correlation ranking among cluster averages across all climate parameters. Borneo's climate zones were categorized into four: 'Wet and cold' (WC) and 'Wet' (W) representing wetter zones, and 'Wet and hot' (WH) and 'Dry and hot' (DH) representing hotter zones, each with clearly defined boundaries. For future projection, EC-Earth3-Veg ranked first for all climate parameters across 961 grid points, emerging as the top-performing model. The linear scaling (LS) bias-corrected EC-Earth3-Veg model, as shown in the Taylor diagram, closely replicated the observed datasets, facilitating future climate zone reclassification. Improved performance across parameters was evident based on MAE (35.8-94.6%), MSE (57.0-99.5%), NRMSE (42.7-92.1%), PBIAS (100-108%), MD (23.0-85.3%), KGE (21.1-78.1%), and VE (5.1-9.1%), with closer replication of empirical probability distribution function (PDF) curves during the validation period. In the future, Borneo's climate zones will shift notably, with WC elongating southward along the mountainous spine, W forming an enclave over the north-central mountains, WH shifting northward and shrinking inland, and DH expanding northward along the western coast. Under SSP5-8.5, WC is expected to expand by 39% and 11% for the mid- and far-future periods, respectively, while W is set to shrink by 46%. WH is projected to expand by 2% and 8% for the mid- and far-future periods, respectively. Conversely, DH is expected to expand by 43% for the far-future period but shrink by 42% for the mid-future period. This study fills a gap by redefining Borneo's climate zones based on an increased number of effective parameters and projecting future shifts, utilizing advanced clustering methods (FCM) under CMIP6 scenarios. Importantly, it contributes by ranking GCMs using RIMs and CPI across multiple climate parameters, addressing a previous gap in GCM assessment. The study's findings can facilitate cross-border collaboration by providing a shared understanding of climate dynamics and informing joint environmental management and disaster response efforts.


Assuntos
Mudança Climática , Bornéu , Temperatura , Ecossistema , Clima , Chuva
2.
Ecotoxicol Environ Saf ; 251: 114561, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36696851

RESUMO

Since genetic factors alone cannot explain most cases of Autism, the environmental factors are worth investigating as they play an essential role in the development of some cases of Autism. This research is a review paper that aims to clarify the role of the macro elements (MEs), Trace elements (TEs) and ultra-trace elements (UTEs) on human health if they are greater or less than the normal range. Aluminium (Al), cadmium Cd), lead (Pb), chromium (Cr), zinc (Zn), copper (Cu), nickel (Ni), arsenic (As), mercury (Hg), manganese (Mn), and iron (Fe) have been reviewed. Exposure to toxicants has a chemical effect that may ultimately lead to autism spectrum disorder (ASD). The Cr, As and Al are found in high concentrations in the blood of an autistic child when compared to normal child reference values. The toxic metals, particularly aluminium, are primarily responsible for difficulties in socialization and language skills disabilities. Zinc and copper are important elements in regulating the gene expression of metallothioneins (MTs), and zinc deficiency may be a risk factor for ASD pathogenesis. Autistics frequently have zinc deficiency combined with copper excess; as part of the treatment protocol, it is critical to monitor zinc and copper levels in autistic people, particularly those with zinc deficiency. Zinc deficiency is linked to epileptic seizures, which are common in autistic patients. Higher serum manganese and copper significantly characterize people who have ASD. Autistic children have significantly decreased lead and cadmium in urine, whereas they have significantly higher urine Cr. A higher level of As and Hg was found in the ASD individual's blood.


Assuntos
Arsênio , Transtorno do Espectro Autista , Transtorno Autístico , Mercúrio , Oligoelementos , Criança , Humanos , Oligoelementos/análise , Cobre , Transtorno Autístico/induzido quimicamente , Manganês/toxicidade , Cádmio/urina , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/metabolismo , Alumínio , Zinco , Cromo , Mercúrio/toxicidade , Arsênio/toxicidade , Arsênio/análise , Substâncias Perigosas
3.
Sci Total Environ ; 737: 140296, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32783866

RESUMO

Disinfection byproducts (DBPs) in drinking water is an issue in many countries. Many DBPs are possible or probable human carcinogens while few DBPs pose cyto- and genotoxic effects to the mammalian cells. The populations are likely to consume DBPs with drinking water throughout their lifetimes. A number of DBPs are regulated in many countries to protect humans. In this study, human exposure, risk and disability-adjusted life years (DALY) were predicted from DBPs in multiple water supply systems, including groundwater (GW), desalinated water (DW) and blend water (BW). The averages of lifetime excess cancer risks from GW, DW and BW were 4.15 × 10-6, 1.75 × 10-5 and 2.59 × 10-5 respectively. The populations in age groups of 0 - <2, 2-16 and >16 years contributed 25.4-25.7%, 28.6-29.6% and 45.0-45.7% to the total risks respectively. The DALY from GW, DW and BW were estimated to be 5.8, 27.0 and 39.9 years, respectively while the corresponding financial burdens were US$ 0.63, 2.93 and 4.34 million respectively. The findings are likely to assist in selecting the supply water sources to better control human exposure and risk from DBPs.


Assuntos
Desinfetantes/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Purificação da Água , Animais , Desinfecção , Halogenação , Humanos , Anos de Vida Ajustados por Qualidade de Vida , Arábia Saudita , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA