Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
Sci Total Environ ; 911: 168583, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-37981157

RESUMO

Aeolian dust is an essential source of growth-limiting nutrients for marine phytoplankton. Despite being at the core of the Global Dust Belt, the response of the Arabian Gulf ecosystem to such atmospheric forcing is rarely documented. Here, the hydro-biological effect of mineral dust was studied in the northern Arabian Gulf (NAG) off Kuwait through monthly water sampling (December 2020 to December 2021), dust-storm follow-up sampling, and mineral dust and nutrient addition in-situ experiments. The multivariate analysis of oceanographic data revealed pronounced hydro-biological seasonality. The mineral dust deposition during two severe dust storm events in March and June 2021 showed a spatially varying effect of dust on coastal waters. The dust storms elevated the surface dissolved iron levels by several magnitudes, increased the dissolved inorganic nitrogen and phosphorous levels, changed their stoichiometry, and offset the hydrobiological seasonality. In the microcosms, dust input temporarily reduced phytoplankton phosphorous limitation in a dose-dependent manner when mesozooplankton (copepods) grazing was minimal. The microphytoplankton response to mineral dust inputs was comparable to that with nitrogen and phosphorous treatment. While Both treatments increased diatom size structure and biomass, the abundance of single-celled diatoms was comparatively higher in dust treatment. Multivariate analysis indicated that dust deposition alters the hydrographical properties of the surface ocean during dust storm events. The effects, though transient, were traceable for 3-16 days post-storm in coastal waters. The response of the summer phytoplankton to these changes, if delayed or muted, should be interpreted with caution given the summer water column stratification, the high nitrogen: phosphorous ratio and the low phosphorous solubility of aerosol dust, and the complex pelagic microbial food web interactions in the NAG. This study thus underlines the importance of a multivariate approach in documenting the ecological implications of Aeolian dust storms on marine environments closer to the dust source regions.


Assuntos
Diatomáceas , Fitoplâncton , Fitoplâncton/fisiologia , Ecossistema , Poeira/análise , Diatomáceas/fisiologia , Fósforo , Água , Minerais , Nitrogênio/análise , Água do Mar/química
3.
Mar Pollut Bull ; 179: 113714, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35576677

RESUMO

Continuous measurements of hydrographic, hydrodynamic, and water quality showed marked diurnal, tidal, and seasonal variabilities in Kuwait Bay, a stressed coastal system in the northwestern Arabian/Persian Gulf. Advection of water masses and seasonality in vertical mixing regulated the Bay's hydrographic and water quality properties. Intensive stratification in summer had substantial implications on the Bay environment. Kuwait Bay constantly exports dense bottom water laden with dissolved inorganic nutrients and organic matter to the central basin of the Gulf. The export was largest in August under strong water column stratification. These in-situ findings agreed well with earlier studies that corroborated Kuwait Bay as an important area where the phenomenon of reverse estuarine circulation originates in the Gulf. Thus, Kuwait Bay is a significant source of nutrients and organic matter to the Gulf Deep Water that flows into the core of the oxygen minimum zone in the northwestern Indian Ocean.


Assuntos
Monitoramento Ambiental , Qualidade da Água , Hidrodinâmica , Oxigênio/análise , Estações do Ano
4.
Mar Pollut Bull ; 153: 110949, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32056856

RESUMO

This study evaluates the potential area and the key environmental factors supporting Sargassum bed restoration (SBR) in the highly turbid northwestern Arabian Gulf where rapid coastal development impinges on the marine ecosystem functioning. Water depth was a primary environmental factor governing the distribution of the subtidal macroalgae beds in these turbid waters. The relationship between Sargassum coverage and water depth measured by an echo sounder indicated optimal water depths where the maximum coverage was observed. The availability of stable hard substrate was another key factor introducing heterogeneity in Sargassum coverage. Potential area for the SBR estimated based on the optimal depths was 4.26 km2, whereas only 50% of the potential area (2.19 km2) was currently vegetated due to the absence of hard substrate. The outcomes of this study offer beneficial information toward implementation of the SBR as a part of mitigation measures in future coastal development plans in the region.


Assuntos
Monitoramento Ambiental , Sargassum , Alga Marinha , Ecossistema
5.
Ecotoxicol Environ Saf ; 150: 280-288, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29289863

RESUMO

The pollution of coastal regions worldwide has been of a great concern due to the presence of endocrine disrupting chemicals (EDCs). These chemicals find their way to the marine environment via the sewage treatment plants (STPs). Hence, this study was designed to investigate the status and sources of EDCs and their effect on fish in Kuwait's coastal areas, from the chemical and biological perspectives. The assessment of three STPs indicated the presence of significant levels of phthalates (19 and 31µg/l), alkylphenols (85 and 159ng/l), and estrogens (30 and 368ng/l) in both inflow and outflow samples. The analysis of samples from field exposure sites revealed significant levels of EDCs in seawater (phthalates: 2.1-4.6µg/l; alkylphenols: 1.2-16.4ng/l; estrogens: 0-36.2ng/l) and sediment (phthalates: 2.1-15.7mg/kg dry wt; alkyphenols: 2.5-15.1µg/kg dry wt.; estrogens: 4.1-214.2µg/kg dry wt.) samples. The biological perspective investigated through the exposure of fish to sewage outlets at five sites. The hepatosomatic index (HSI) revealed a higher level in winter samples 0.48-0.79%) in comparison to summer samples 1-1.5%). Histological observation of hepatic tissue of fish exposed during winter months in all sites, showed much less necrotic changes and hepatic vacuolation in the hepatic tissue of summer exposed fish. Imunnohistochemistry evidences revealed a significant level of positive signals and Vtg localization in the hepatic tissue as the results support the histopathological alterations observed. Results of enzyme-linked immunosorbent assay (ELISA) showed no significant difference between the plasma protein content of winter and summer samples. Overall, the study suggest that there is possible local source or a chronic input of untreated and/or partially treated water due to the significant levels of phthalates, alkyphenols, and estrogens detected in the Kuwait Bay. These levels were enough to initiate alteration in the hepatic tissue of fish exposed to the sewage outlets in Kuwait for two weeks.


Assuntos
Disruptores Endócrinos/toxicidade , Fígado/efeitos dos fármacos , Dourada/metabolismo , Água do Mar/química , Esgotos/química , Poluentes Químicos da Água/toxicidade , Animais , Disruptores Endócrinos/análise , Ensaio de Imunoadsorção Enzimática , Kuweit , Fígado/metabolismo , Fígado/patologia , Vitelogeninas/metabolismo , Poluentes Químicos da Água/análise , Purificação da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA