Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36465492

RESUMO

Haemophilus influenzae is a pathogen that causes invasive bacterial infections in humans. The highest prevalence lies in both young children and adults. Generally, there are no vaccines available that target all the strains of Haemophilus influenzae. Hence, the purpose of this research is to employ bioinformatics and immunoinformatics approaches to design a Multi-Epitope Vaccine candidate employing the pathogenic cell division protein FtsN that specifically combat all the Haemophilus influenzae strains. The current research focuses on developing subunit vaccine in contrast to vaccines generated from the entire pathogen. This will be accomplished by combining multiple bioinformatics and immunoinformatics approaches. As a result, prospective T cells (helper T lymphocyte and cytotoxic T lymphocytes) and B cells epitopes were investigated. The human leukocyte antigen allele having strong associations with the antigenic and overlapping epitopes were chosen, with 70% of the total coverage of the world population. To construct a linked vaccine design, multiple linkers were used. To increase the immunogenic profile, an adjuvant was linked using EAAAK linker. The final vaccine construct with 149 amino acids was obtained after adjuvants and linkers were added. The developed Multi-Epitope Vaccine has a high antigenicity as well as viable physiochemical features. The 3D conformation was modeled and undergoes refinement and validation using bioinformatics methods. Furthermore, protein-protein molecular docking analysis was performed to predict the effective binding poses of Multi-Epitope Vaccine with the Toll-like receptor 4 protein. Besides, vaccine underwent the codon translational optimization and computational cloning to verify the reliability and proper Multi-Epitope Vaccine expression. In addition, it is necessary to conduct experiments and research in the laboratory to demonstrate that the vaccine that has been developed is immunogenic and protective.

2.
Anim Biotechnol ; 34(2): 166-182, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34319853

RESUMO

The study planned to estimate biological parameters linked to rheumatoid arthritis (RA) patients, detecting the influence of MTX and biotherapy treatments on these parameters and synthesizing methotrexate bovine serum albumin nanoparticles linked to folate (FA-MTX-BSA NPs) to reduce the overwhelming expression of inflammatory cytokines. Inflammatory parameters showed significant increases in newly diagnosed and MTX-receiving groups while no changes were observed in the biotherapy-maintained group. MTX-loaded BSA nanoparticles were fabricated by the desolvation method and further linked to activated folic acid to obtain FA-MTX-BSA NPs. FA-MTX-BSA NPs were successfully characterized within the nanoscale range using different screening techniques. FA-MTX-BSA NPs showed an in vitro release in a sustained manner. The potential of MTX, MTX-BSA NPs, and FA-MTX-BSA NPs in inducing cytokine level reduction was detected. Significant decreases in interleukin- 1 beta (IL-1ß), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) levels were obtained in cultures treated with FA-MTX-BSA NPs compared to the untreated culture in a dose-dependent pattern. Furthermore, FA-MTX-BSA NPs comparing with MTX and MTX-BSA NPs exhibited a significant advanced effect in decreasing cytokines levels. Accordingly, the conjunction of BSA NPs and MTX linked to folate potentially reduced cytokines manifestation in RA.


Assuntos
Artrite Reumatoide , Nanopartículas , Animais , Metotrexato/uso terapêutico , Ácido Fólico/uso terapêutico , Soroalbumina Bovina/uso terapêutico , Citocinas , Sistemas de Liberação de Medicamentos , Artrite Reumatoide/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA