Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J AAPOS ; : 104007, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39304031

RESUMO

Early-onset, severe retinal dystrophy can be isolated or syndromic, presenting as part of an underlying systemic disease. Mainzer-Saldino syndrome, a rare systemic ciliopathy characterized by skeletal and renal disease, is caused by recessive mutations in the intraflagellar transport 140 chlamydomonas homologue (IFT140) gene. We present a series of 13 cases of early-onset retinal dysfunction with confirmed IFT140 mutations from 8 unrelated Saudi families belonging to 3 well-known tribes. All carried the same homozygous missense IFT140 mutation (c.1990G>A; p.Glu664Lys) except for a single family, which included 4 affected subjects, 3 of whom were aborted fetuses, with compound heterozygous pathogenic IFT140 variants (c.1525-1G>A and c.1990G>A; p.Glu664Lys). Severe retinal dystrophy was present in all living subjects, phenotypically apparent as hyperopia, nystagmus, nyctalopia, poor vision and nonrecordable full-field electroretinography. All affected individuals had skeletal abnormalities, and neurological abnormalities were common, but there was no evidence of chronic renal failure.

2.
J Med Genet ; 2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39209426

RESUMO

BACKGROUND: Weakness of facial, ocular and axial muscles is a common clinical presentation in congenital myopathies caused by pathogenic variants in genes encoding triad proteins. Abnormalities in triad structure and function resulting in disturbed excitation-contraction coupling and Ca2+ homeostasis can contribute to disease pathology. METHODS: We analysed exome and genome sequencing data from four unrelated individuals with congenital myopathy characterised by facial, ocular and bulbar involvement. We collected deep phenotypic data from the affected individuals. We analysed the RNA-sequencing (RNA-seq) data of F3-II.1 and performed gene expression outlier analysis in 129 samples. RESULTS: The four probands had a remarkably similar clinical presentation with prominent facial, ocular and bulbar features. Disease onset was in the neonatal period with hypotonia, poor feeding, cleft palate and talipes. Muscle weakness was generalised but prominent in the lower limbs with facial weakness also present. All patients had myopathic facies, bilateral ptosis, ophthalmoplegia and fatigability. Muscle biopsy on light microscopy showed type 1 myofiber predominance and ultrastructural analysis revealed slightly reduced triads, and structurally abnormal sarcoplasmic reticulum.DNA sequencing identified four unique homozygous loss-of-function variants in JPH1, encoding junctophilin-1 in the four families; one stop-gain (c.354C>A;p.Tyr118*) and three frameshift (c.373delG;p.Asp125Thrfs*30, c.1738delC;p.Leu580Trpfs*16 and c.1510delG;p. Glu504Serfs*3) variants. Muscle RNA-seq showed strong downregulation of JPH1 in the F3 proband. CONCLUSIONS: Junctophilin-1 is critical for the formation of skeletal muscle triad junctions by connecting the sarcoplasmic reticulum and T-tubules. Our findings suggest that loss of JPH1 results in a congenital myopathy with prominent facial, bulbar and ocular involvement.

3.
Neurol Genet ; 10(4): e200172, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39040917

RESUMO

Background and Objectives: Noncentrosomal microtubules are essential cytoskeletal filaments that are important for neurite formation, axonal transport, and neuronal migration. They require stabilization by microtubule minus-end-targeting proteins including the CLASP family of molecules. To date, no human monogenic disorder has been associated with the CLASP1 gene. In this study, we aimed to delineate the clinical and neuroradiologic phenotype associated with biallelic CLASP1 variants. Methods: We analyzed clinical characteristics, MRI data, and genotypes of a cohort of 3 patients with homozygous variants in CLASP1. Results: Homozygous CLASP1 variant is associated with primary microcephaly, severe neurodevelopmental delay, and early-onset refractory epilepsy. The neuroradiologic phenotype comprises a highly recognizable combination of classic lissencephaly, with the posterior gradient more severe than the anterior gradient, a thin/hypoplastic splenium of the corpus callosum, mild enlargement of the lateral ventricles primarily posteriorly with a squared pattern, and pontine hypoplasia. Discussion: This study underscores the role of CLASP1 in brain development and suggests that the identified variant disrupts CLASP1 interaction with the microtubule cytoskeleton, contributing to lissencephaly pathogenesis.

4.
Cureus ; 16(4): e58922, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38800253

RESUMO

Alpha-mannosidosis is a rare lysosomal storage disorder with progressive impairments in motor functions, skeletal deformities, and immunodeficiency. Enzyme replacement therapy (ERT) should be initiated early to achieve optimal outcomes. This report describes how alpha-mannosidosis diagnosis in a seven-year-old girl led to a successful prenatal diagnosis in the subsequent pregnancy and pre-symptomatic treatment at the early disease stage. The index patient was a seven-year-old girl who was referred with a confirmed diagnosis of alpha-mannosidosis based on the presence of homozygous c.437-1G>A mutation in the MAN2B1 gene. A prenatal diagnosis was made in the subsequent pregnancy through molecular analysis, which revealed the same homozygous variant. The patient was treated at the fifth week of age and showed mild skeletal involvement and normal development at ERT initiation. At 11 months of age, the ERT level increased to 15.8 µmol/l/h. The motor assessment showed that the patient was developmentally normal and was able to maintain her sitting and walking for a few steps only. Prenatal molecular screening in affected families can allow for the early identification and implementation of appropriate management strategies for alpha-mannosidosis.

5.
Clin Genet ; 106(1): 66-71, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38417950

RESUMO

Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia, and Cardiac defects (PDAC) syndrome is a genetically heterogeneous multiple congenital malformation syndrome. Although pathogenic variants in RARB and STRA6 are established causes of PDAC, many PDAC cases remain unsolved at the molecular level. Recently, we proposed biallelic WNT7B variants as a novel etiology based on several families with typical features of PDAC syndrome albeit with variable expressivity. Here, we report three patients from two families that share a novel founder variant in WNT7B (c.739C > T; Arg247Trp). The phenotypic expression of this variant ranges from typical PDAC features to isolated genitourinary anomalies. Similar to previously reported PDAC-associated WNT7B variants, this variant was found to significantly impair WNT7B signaling activity further corroborating its proposed pathogenicity. This report adds further evidence to WNT7B-related PDAC and expands its variable expressivity.


Assuntos
Fenótipo , Proteínas Wnt , Humanos , Proteínas Wnt/genética , Masculino , Feminino , Anoftalmia/genética , Anoftalmia/patologia , Microftalmia/genética , Microftalmia/patologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Efeito Fundador , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/patologia , Linhagem , Mutação , Predisposição Genética para Doença , Síndrome , Pulmão/patologia , Pulmão/anormalidades
6.
Neurogenetics ; 25(2): 79-83, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38240911

RESUMO

Narcolepsy with cataplexy is a complex disease with both genetic and environmental risk factors. To gain further insight into the homozygous HCRT-related narcolepsy, we present a case series of five patients from two consanguineous families, each harboring a novel homozygous variant of HCRT c.17_18del. All affected individuals exhibited severe cataplexy accompanied by narcolepsy symptoms during infancy. Additionally, cataplexy symptoms improved or disappeared in the majority of patients over time. Pathogenic variants in HCRT cause autosomal recessive narcolepsy with cataplexy. Genetic testing of the HCRT gene should be conducted in specific subgroups of narcolepsy, particularly those with early onset, familial cases, and a predominantly cataplexy phenotype.


Assuntos
Narcolepsia , Linhagem , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Alelos , Cataplexia/genética , Consanguinidade , Genes Recessivos , Homozigoto , Mutação/genética , Narcolepsia/genética , Orexinas/genética , Fenótipo
8.
Am J Med Genet A ; 194(1): 59-63, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37698259

RESUMO

Childhood-onset cardiomyopathy is a genetically heterogeneous group of conditions with several genes implicated. Recently, biallelic loss-of-function variants in PPP1R13L have been reported in association with a syndromic form of dilated cardiomyopathy (DCM). In addition, affected children manifest skin and hair abnormalities, cleft lip and palate (CLP), and eye findings. Here, we delineate the condition further by describing the phenotype associated with a homozygous frameshift variant (p.Arg330 ProfsTer76) in PPP1R13L detected in two sibships in a consanguineous family with six affected children. The index case had DCM and wooly hair, two of his siblings had DCM and CLP while three cousins had, in addition, glaucoma. Global developmental delay was observed in one child. All the children, except one, died during early childhood. Whole exome sequencing and whole genome sequencing did not reveal any other plausible variant. We provide further evidence that implicates PPP1R13L in a variable syndromic form of severe childhood-onset DCM and suggests expanding the spectrum of this condition to include glaucoma. Given the variability of the phenotype associated with PPP1R13-related DCM, a thorough evaluation of each case is highly recommended even in the presence of an apparently isolated DCM.


Assuntos
Cardiomiopatia Dilatada , Fenda Labial , Fissura Palatina , Glaucoma , Criança , Humanos , Pré-Escolar , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Alelos , Fenda Labial/genética , Fissura Palatina/genética , Fenótipo , Glaucoma/genética , Proteínas Repressoras/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
9.
Front Neurol ; 14: 1268035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38093758

RESUMO

The neurological complications of coronavirus disease 2019 (COVID-19) can range from simple tremors and dystonia to features of encephalopathy. Toll-like receptor 7 (TLR7) belongs to a family of innate immune receptors responsible for viral RNA detection (such as SARS-CoV-2) and immune response initiation. TLR7 loss of function variants have been previously reported as genetic risk factors for severe COVID-19 infection in young patients with no comorbidities. In this case, we report a pediatric patient who developed severe long-term neurological deterioration following his COVID-19 infection. Presenting first to the clinic with episodic dystonia and finger spasticity, the patient's condition rapidly deteriorated with a significant drop in the Glasgow Coma Scale (GCS). Despite improvement following initial treatment with rituximab and intravenous immunoglobulin, the patient's symptoms relapsed, and GCS further dropped to 3/15. Serial brain magnetic resonance imaging scans revealed diffuse parenchymal atrophy, ventricular enlargement, and spinal cord thickening. Autoimmune investigations were negative but clinical whole genome sequencing prioritized four gene variants, the most significant of which was a novel frameshift null variant of the X chromosomal TLR7 gene (c.1386_1389dup, p.[His464Ilefs*7]). This case illustrates a role for TLR7 in long-term COVID-19 complications and highlights that TLR7 deficiency in the future may be addressed as a therapeutic measure.

10.
Saudi J Ophthalmol ; 37(4): 301-306, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38155673

RESUMO

PURPOSE: Achromatopsia is a rare stationary retinal disorder that primarily affects the cone photoreceptors. Individuals with achromatopsia present with photophobia, nystagmus, reduced visual acuity (VA), and color blindness. Multiple genes responsible for achromatopsia have been identified (e.g. cyclic nucleotide-gated channel subunit alpha 3 [CNGA3] and activating transcription factor 6). Studies have assessed the role of gene therapy in achromatopsia. Therefore, for treatment and prevention, the identification of phenotypes and genotypes is crucial. Here, we described the clinical manifestations and genetic mutations associated with achromatopsia in patients from Saudi Arabia. METHODS: This case series study included 15 patients with clinical presentations, suggestive of achromatopsia, who underwent ophthalmological and systemic evaluations. Patients with typical achromatopsia phenotype underwent genetic evaluation using whole-exome testing. RESULTS: All patients had nystagmus (n = 15) and 93.3% had photophobia (n = 14). In addition, all patients (n = 15) had poor VA. Hyperopia with astigmatism was observed in 93.3% (n = 14) and complete color blindness in 93.3% of the patients (n = 14). In the context of family history, both parents of all patients (n = 15) were genetic carriers, with a high consanguinity rate (82%, n = 9 families). Electroretinography showed cone dysfunction with normal rods in 66.7% (n = 10) and both cone-rod dysfunction in 33.3% (n = 5) patients. Regarding the genotypic features, 93% of patients had variants in CNGA3 (n = 14) categorized as pathogenic Class 1 (86.7%, n = 13). Further, 66.7% (n = 10) of patients also harbored the c.661C>T DNA variant. Further, the patients were homozygous for these mutations. Three other variants were also identified: c.1768G>A (13.3%, n = 2), c.830G>A (6.6%, n = 1), and c. 822G >T (6.6%, n = 1). CONCLUSION: Consanguinity and belonging to the same tribe are major risk factors for disease inheritance. The most common genotype was CNGA3 with the c.661C>T DNA variant. We recommend raising awareness among families and providing genetic counseling for this highly debilitating disease.

11.
Genome Med ; 15(1): 114, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38098057

RESUMO

BACKGROUND: Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS: In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS: Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS: Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.


Assuntos
Exoma , Padrões de Herança , Recém-Nascido , Humanos , Genes Recessivos , Mutação , Sequenciamento do Exoma , Linhagem , Proteínas do Olho/genética , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
13.
Hum Genet ; 142(3): 379-397, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36538041

RESUMO

CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.


Assuntos
Actinas , Peixe-Zebra , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Endossomos/genética , Endossomos/metabolismo , Células HEK293 , Lectinas Tipo C/genética , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Transporte de Monossacarídeos/química , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas Nucleares/metabolismo , Transporte Proteico , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinas/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
14.
J Pediatr Genet ; 11(4): 320-323, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36267867

RESUMO

Ring chromosome 15 is a rare chromosomal disorder, which usually occurs during early embryonic development via spontaneous errors and has variable presentation. To date, 89 cases of this condition have been reported. This case report describes a 5-year-old Saudi boy who was diagnosed as having de novo 46,XY,r(15). The patient presented with short stature, speech delay, café au lait spots, and facial dysmorphic features, together with new findings of left crossed fused renal ectopia and 11 ribs. This presentation was compared with the findings of cases reported previously.

15.
Am J Med Genet A ; 188(10): 2932-2940, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35861185

RESUMO

Pathogenic variants in GEMIN4 have recently been linked to an inherited autosomal recessive neurodevelopmental disorder characterized with microcephaly, cataracts, and renal abnormalities (NEDMCR syndrome). This report provides a retrospective review of 16 patients from 11 unrelated Saudi consanguineous families with GEMIN4 mutations. The cohort comprises 11 new and unpublished clinical details from five previously described patients. Only two missense, homozygous, pathogenic variants were found in all affected patients, suggesting a founder effect. All patients shared global developmental delay with variable ophthalmological, renal, and skeletal manifestations. In addition, we knocked down endogenous Drosophila GEMIN4 in neurons to further investigate the mechanism of the functional defects in affected patients. Our fly model findings demonstrated developmental defects and motor dysfunction suggesting that loss of GEMIN4 function is detrimental in vivo; likely similar to human patients. To date, this study presents the largest cohort of patients affected with GEMIN4 mutations. Considering that identifying GEMIN4 defects in patients presenting with neurodevelopmental delay and congenital cataract will help in early diagnosis, appropriate management and prevention plans that can be made for affected families.


Assuntos
Anormalidades Múltiplas , Catarata , Microcefalia , Transtornos do Neurodesenvolvimento , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Catarata/patologia , Homozigoto , Humanos , Rim/anormalidades , Microcefalia/diagnóstico , Microcefalia/genética , Microcefalia/patologia , Antígenos de Histocompatibilidade Menor , Transtornos do Neurodesenvolvimento/genética , Linhagem , Ribonucleoproteínas Nucleares Pequenas/genética , Síndrome , Anormalidades Urogenitais
16.
Neurol Genet ; 8(4): e200010, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35821753

RESUMO

Objectives: Our objective was to identify the genetic cause in a family with a remarkable history of neurodevelopmental disease and growth retardation. Methods: A neurologic evaluation was performed, and DNA samples were obtained from the affected siblings and parents to perform whole-exome sequencing (WES). Results: Both siblings presented with dysmorphic features, failure to thrive, global developmental delay, generalized hypotonia, feeding problems, and congenital heart disease. WES revealed a homozygous nonsense variant in the FRA10AC1 gene in both siblings. Discussion: A recent study has reported the first association of biallelic variants in the spliceosomal C complex gene, FRA10AC1, with syndromic neurodevelopmental disease and growth retardation in 5 patients from 3 consanguineous families complex. In this study, we provide the first confirmation of the reported FRA10AC1-related neurologic syndrome in an additional family.

17.
Am J Hum Genet ; 109(8): 1421-1435, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35830857

RESUMO

PPFIBP1 encodes for the liprin-ß1 protein, which has been shown to play a role in neuronal outgrowth and synapse formation in Drosophila melanogaster. By exome and genome sequencing, we detected nine ultra-rare homozygous loss-of-function variants in 16 individuals from 12 unrelated families. The individuals presented with moderate to profound developmental delay, often refractory early-onset epilepsy, and progressive microcephaly. Further common clinical findings included muscular hyper- and hypotonia, spasticity, failure to thrive and short stature, feeding difficulties, impaired vision, and congenital heart defects. Neuroimaging revealed abnormalities of brain morphology with leukoencephalopathy, ventriculomegaly, cortical abnormalities, and intracranial periventricular calcifications as major features. In a fetus with intracranial calcifications, we identified a rare homozygous missense variant that by structural analysis was predicted to disturb the topology of the SAM domain region that is essential for protein-protein interaction. For further insight into the effects of PPFIBP1 loss of function, we performed automated behavioral phenotyping of a Caenorhabditis elegans PPFIBP1/hlb-1 knockout model, which revealed defects in spontaneous and light-induced behavior and confirmed resistance to the acetylcholinesterase inhibitor aldicarb, suggesting a defect in the neuronal presynaptic zone. In conclusion, we establish bi-allelic loss-of-function variants in PPFIBP1 as a cause of an autosomal recessive severe neurodevelopmental disorder with early-onset epilepsy, microcephaly, and periventricular calcifications.


Assuntos
Epilepsia , Microcefalia , Malformações do Sistema Nervoso , Transtornos do Neurodesenvolvimento , Acetilcolinesterase/genética , Animais , Drosophila melanogaster/genética , Epilepsia/genética , Perda de Heterozigosidade , Microcefalia/genética , Transtornos do Neurodesenvolvimento/genética , Linhagem
18.
Eur J Med Genet ; 65(8): 104537, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690317

RESUMO

Transcriptional coregulators modulate the efficiency of transcription factors. Bi-allelic variants in TRIP4 and ASCC1, two genes that encode members of the tetrameric coregulator ASC-1, have recently been associated with congenital bone fractures, hypotonia, and muscular dystrophy in a total of 22 unrelated families. Upon exome sequencing and data repository mining, we identified six new patients with pathogenic homozygous variants in either TRIP4 (n = 4, two novel variants) or ASCC1 (n = 2, one novel variant). The associated clinical findings confirm and extend previous descriptions. Considering all patients reported to date, we provide supporting evidence suggesting that ASCC1-related disease has a more severe phenotype compared to TRIP4-related disorder regarding higher incidence of perinatal bone fractures and shorter survival.


Assuntos
Fraturas Ósseas , Doenças Musculares , Malformações do Sistema Nervoso , Proteínas de Transporte/genética , Fraturas Ósseas/genética , Homozigoto , Humanos , Doenças Musculares/genética , Mutação , Fenótipo , Fatores de Transcrição/genética , Sequenciamento do Exoma
20.
Brain ; 145(3): 909-924, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-34605855

RESUMO

The solute carrier (SLC) superfamily encompasses >400 transmembrane transporters involved in the exchange of amino acids, nutrients, ions, metals, neurotransmitters and metabolites across biological membranes. SLCs are highly expressed in the mammalian brain; defects in nearly 100 unique SLC-encoding genes (OMIM: https://www.omim.org) are associated with rare Mendelian disorders including developmental and epileptic encephalopathy and severe neurodevelopmental disorders. Exome sequencing and family-based rare variant analyses on a cohort with neurodevelopmental disorders identified two siblings with developmental and epileptic encephalopathy and a shared deleterious homozygous splicing variant in SLC38A3. The gene encodes SNAT3, a sodium-coupled neutral amino acid transporter and a principal transporter of the amino acids asparagine, histidine, and glutamine, the latter being the precursor for the neurotransmitters GABA and glutamate. Additional subjects with a similar developmental and epileptic encephalopathy phenotype and biallelic predicted-damaging SLC38A3 variants were ascertained through GeneMatcher and collaborations with research and clinical molecular diagnostic laboratories. Untargeted metabolomic analysis was performed to identify novel metabolic biomarkers. Ten individuals from seven unrelated families from six different countries with deleterious biallelic variants in SLC38A3 were identified. Global developmental delay, intellectual disability, hypotonia, and absent speech were common features while microcephaly, epilepsy, and visual impairment were present in the majority. Epilepsy was drug-resistant in half. Metabolomic analysis revealed perturbations of glutamate, histidine, and nitrogen metabolism in plasma, urine, and CSF of selected subjects, potentially representing biomarkers of disease. Our data support the contention that SLC38A3 is a novel disease gene for developmental and epileptic encephalopathy and illuminate the likely pathophysiology of the disease as perturbations in glutamine homeostasis.


Assuntos
Epilepsia Generalizada , Trocador de Sódio e Cálcio , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Glutamina/metabolismo , Histidina/metabolismo , Humanos , Metaboloma , Nitrogênio/metabolismo , Trocador de Sódio e Cálcio/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA