Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
COPD ; 20(1): 292-297, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37665565

RESUMO

During the COVID-19 pandemic the number of hospital admissions due to chronic obstructive pulmonary disease (COPD) exacerbations was significantly reduced. The reason for this decline is not fully understood. Governmental non-pharmaceutical interventions (NPI's), an increase in community treated exacerbations, or healthcare avoidance by patients, are potential reasons. For the current study, the impact of Dutch governmental NPI's on the COPD exacerbations and respiratory infections rate in patients with severe alpha-1 antitrypsin deficiency (AATD) was analyzed. The patients participated in the NCT04204252 study, a randomized controlled trial evaluating the efficacy and safety of inhaled alpha-1 antitrypsin. Data collected in the time-period from March 2020 until February 2022 was analyzed. In this period the Dutch government imposed variable NPI's to contain the spread of SARS-CoV-2. Patients were required to document their daily symptoms in an electronic diary. The strictness of the governmental NPI's was measured by the COVID-19 Stringency Index. 19 patients participated in this study during the analysis period. A total of 40 respiratory infections and COPD exacerbations occurred. The Spearman's correlation coefficient of the monthly average COVID-19 Stringency Index and respiratory infections and COPD exacerbations rate was -0.316 (p = 0.132). When months known for a low respiratory infection rate were excluded, the correlation coefficient was -0.625 (p = 0.010). This study showed a significant negative correlation between the COPD exacerbations and respiratory infection rate and the COVID-19 Stringency Index in patients with AATD related COPD in the autumn-winter months.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Infecções Respiratórias , Deficiência de alfa 1-Antitripsina , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Pandemias , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/epidemiologia , Governo , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia
2.
Clin Infect Dis ; 77(7): 964-971, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220751

RESUMO

BACKGROUND: It is unknown whether convalescent immunoglobulins (cIgGs) are better than convalescent plasma (CP) for patients with coronavirus 2019 (COVID-19). METHODS: In this randomized controlled trial, we assigned high risk COVID-19 patients with ≤10 days of symptoms, to receive cIgGs or CP. The primary endpoint was improvement on day 14 according to the World Health Organization scale. Secondary endpoints were survival on day 14, and improvement, survival, and percent of ventilated patients on day 28, and treatment response in unvaccinated and vaccinated patients. RESULTS: A total of 319 patients were included: 166 received cIgGs and 153 CP. Median age was 64 to 66 years. A total of 112 patients (67.5%) in the cIgG group and 103 patients (67.3%) in the CP group reached the primary endpoint. Difference between groups was 0.1 (95% confidence interval, -10.1 to 10.4; P = .026), failing to reach noninferiority. More patients receiving cIgG improved by day 28 (136 patients [81.9%] and 108 patients [70.6%], respectively; 95% confidence interval, 1.9-20.7; P < .001; for superiority P = .018). Seventeen patients in the cIgG group (10.2%) and 25 patients (16.3%) in the CP group required mechanical ventilation (P = .136). Sixteen (9.6%) and 23 (15%) patients, respectively, died (P = .172). More unvaccinated patients improved by day 28 in the cIgG group (84.1% vs 66.1%; P = .024), and survival was better in the cIgG group (89.9% vs 77.4%; P = .066). CONCLUSIONS: cIgGs failed to reach the primary noninferiority endpoint on day 14 but was superior to CP on day 28. Survival and improvement by day 28 in unvaccinated patients treated with cIgGs were better. In the face of new variants, cIgGs are a viable option for treating COVID-19. TRIAL REGISTRATION NUMBER: My Trials MOH_2021-01-14_009667.


Assuntos
COVID-19 , Humanos , Pessoa de Meia-Idade , Idoso , COVID-19/terapia , SARS-CoV-2 , Imunização Passiva/efeitos adversos , Resultado do Tratamento , Soroterapia para COVID-19 , Imunoglobulinas
4.
ACS Chem Neurosci ; 5(9): 812-22, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25028803

RESUMO

Use of randomized peptide libraries to evolve molecules with new functions provides a means for developing novel regulators of protein activity. Despite the demonstrated power of such approaches for soluble targets, application of this strategy to membrane systems, such as ion channels, remains challenging. Here, we have combined libraries of a tethered protein scaffold with functional selection in yeast to develop a novel activator of the G-protein-coupled mammalian inwardly rectifying potassium channel Kir3.2 (GIRK2). We show that the novel regulator, denoted N5, increases Kir3.2 (GIRK2) basal activity by inhibiting clearance of the channel from the cellular surface rather than affecting the core biophysical properties of the channel. These studies establish the tethered protein display strategy as a means to create new channel modulators and highlight the power of approaches that couple randomized libraries with direct selections for functional effects. Our results further underscore the possibility for the development of modulators that influence channel function by altering cell surface expression densities rather than by direct action on channel biophysical parameters. The use of tethered library selection strategies coupled with functional selection bypasses the need for a purified target and is likely to be applicable to a range of membrane protein systems.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/genética , Regulação da Expressão Gênica , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Camundongos , Microinjeções , Oócitos , Técnicas de Patch-Clamp , Biblioteca de Peptídeos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Xenopus laevis
5.
Nat Rev Neurol ; 5(11): 598-609, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19826400

RESUMO

Primary dystonia is characterized by abnormal, involuntary twisting and turning movements that reflect impaired motor system function. The dystonic brain seems normal, in that it contains no overt lesions or evidence of neurodegeneration, but functional brain imaging has uncovered abnormalities involving the cortex, striatum and cerebellum, and diffusion tensor imaging suggests the presence of microstructural defects in white matter tracts of the cerebellothalamocortical circuit. Clinical electrophysiological studies show that the dystonic CNS exhibits aberrant plasticity--perhaps related to deficient inhibitory neurotransmission--in a range of brain structures, as well as the spinal cord. Dystonia is, therefore, best conceptualized as a motor circuit disorder, rather than an abnormality of a particular brain structure. None of the aforementioned abnormalities can be strictly causal, as they are not limited to regions of the CNS subserving clinically affected body parts, and are found in seemingly healthy patients with dystonia-related mutations. The study of dystonia-related genes will, hopefully, help researchers to unravel the chain of events from molecular to cellular to system abnormalities. DYT1 mutations, for example, cause abnormalities within the endoplasmic reticulum-nuclear envelope endomembrane system. Other dystonia-related gene products traffic through the endoplasmic reticulum, suggesting a potential cell biological theme underlying primary dystonia.


Assuntos
Distúrbios Distônicos/genética , Distúrbios Distônicos/patologia , Animais , Encéfalo/irrigação sanguínea , Encéfalo/patologia , Encéfalo/fisiopatologia , Química Encefálica , Lesões Encefálicas/complicações , Lesões Encefálicas/patologia , Progressão da Doença , Distúrbios Distônicos/classificação , Distúrbios Distônicos/etiologia , Humanos , Chaperonas Moleculares/genética , Vias Neurais/patologia
6.
Neuron ; 47(6): 833-43, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16157278

RESUMO

Ion channels lower the energetic barrier for ion passage across cell membranes and enable the generation of bioelectricity. Electrostatic interactions between permeant ions and channel pore helix dipoles have been proposed as a general mechanism for facilitating ion passage. Here, using genetic selections to probe interactions of an exemplar potassium channel blocker, barium, with the inward rectifier Kir2.1, we identify mutants bearing positively charged residues in the potassium channel signature sequence at the pore helix C terminus. We show that these channels are functional, selective, resistant to barium block, and have minimally altered conductance properties. Both the experimental data and model calculations indicate that barium resistance originates from electrostatics. We demonstrate that potassium channel function is remarkably unperturbed when positive charges occur near the permeant ions at a location that should counteract pore helix electrostatic effects. Thus, contrary to accepted models, the pore helix dipole seems to be a minor factor in potassium channel permeation.


Assuntos
Sequências Hélice-Alça-Hélice/fisiologia , Ativação do Canal Iônico/fisiologia , Animais , Bário/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/genética , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Condutividade Elétrica , Estimulação Elétrica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Ativação do Canal Iônico/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Moleculares , Mutagênese/fisiologia , Oócitos , Técnicas de Patch-Clamp/métodos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Proteínas Recombinantes de Fusão/fisiologia , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Relação Estrutura-Atividade , Xenopus laevis
7.
Neuron ; 39(1): 9-12, 2003 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-12848928

RESUMO

G protein-coupled inwardly rectifying potassium channels (GIRK/Kir3) are important elements in controlling cellular excitability. In recent years, tremendous progress has been made toward understanding various components involved in channel activation, modulation, and signaling specificity. In this review, we summarize these recent findings and attempt to put them in context with recently available structural data.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Ativação do Canal Iônico/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/química , Canais de Potássio/fisiologia , Transdução de Sinais/fisiologia , Animais , Membrana Celular/ultraestrutura , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Humanos , Conformação Proteica , Subunidades Proteicas/fisiologia , Relação Estrutura-Atividade
8.
Biophys J ; 85(1): 300-12, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12829485

RESUMO

Ion channels can be gated by various extrinsic cues, such as voltage, pH, and second messengers. However, most ion channels display extrinsic cue-independent transitions as well. These events represent spontaneous conformational changes of the channel protein. The molecular basis for spontaneous gating and its relation to the mechanism by which channels undergo activation gating by extrinsic cue stimulation is not well understood. Here we show that the proximal pore helix of inwardly rectifying (Kir) channels is partially responsible for determining spontaneous gating characteristics, affecting the open state of the channel by stabilizing intraburst openings as well as the bursting state itself without affecting K(+) ion-channel interactions. The effect of the pore helix on the open state of the channel is qualitatively similar to that of two well-characterized mutations at the second transmembrane domain (TM2), which stabilize the channel in its activated state. However, the effects of the pore helix and the TM2 mutations on gating were additive and independent of each other. Moreover, in sharp contrast to the two TM2 mutations, the pore helix mutation did not affect the functionality of the agonist-responsive gate. Our results suggest that in Kir channels, the bottom of the pore helix and agonist-induced conformational transitions at the TM2 ultimately stabilize via different pathways the open conformation of the same gate.


Assuntos
Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Canais de Potássio/fisiologia , Potássio/metabolismo , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Mutação , Oócitos/química , Oócitos/fisiologia , Canais de Potássio/química , Canais de Potássio Corretores do Fluxo de Internalização/química , Conformação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Xenopus laevis
9.
Proc Natl Acad Sci U S A ; 99(16): 10783-8, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12124401

RESUMO

G protein coupled inwardly rectifying K(+) channels (GIRK/Kir3.x) are mainly activated by a direct interaction with Gbetagamma subunits, released upon the activation of inhibitory neurotransmitter receptors. Although Gbetagamma binding domains on all four subunits have been found, the relative contribution of each of these binding sites to channel gating has not yet been defined. It is also not known whether GIRK channels open once all Gbetagamma sites are occupied, or whether gating is a graded process. We used a tandem tetrameric approach to enable the selective elimination of specific Gbetagamma binding domains in the tetrameric context. Here, we show that tandem tetramers are fully operational. Tetramers with only one wild-type channel subunit showed receptor-independent high constitutive activity. The presence of two or three wild-type subunits reconstituted receptor activation gradually. Furthermore, a tetramer with no GIRK1 Gbetagamma binding domain displayed slower kinetics of activation. The slowdown in activation was found to be independent of regulator of G protein signaling or receptor coupling, but this slowdown could be reversed once only one Gbetagamma binding domain of GIRK1 was added. These results suggest that partial activation can occur under low Gbetagamma occupancy and that full activation can be accomplished by the interaction with three Gbetagamma binding subunits.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/metabolismo , Animais , Sítios de Ligação , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Ativação do Canal Iônico , Canais de Potássio/fisiologia , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA