Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39000655

RESUMO

Microfiltration membranes derived from semi-crystalline polymers face various challenges when synthesized through the extrusion-casting technique, including the use of large quantities of polymer, long casting times, and the generation of substantial waste. This study focuses on synthesizing these membranes using spin-casting, followed by stretch-induced pore formation. Recycled high-density polyethylene (HDPE) and virgin polyethylene powder, combined with a calcium carbonate filler, were used as the source materials for the membranes. The influence of the polymer-filler ratio with and without stretching on the morphology, tensile strength, and water flow rate was investigated. Optimal conditions were determined, emphasizing a balance between pore structure and mechanical integrity. The permeable membrane exhibited a water flow rate of 19 mL/min, a tensile strength of 32 MPa, and a water contact angle of 126°. These membranes effectively eliminated suspended particles from water, with their performance evaluated against that of commercially available membranes. This research, carried out utilizing the spin-casting technique, outlines a synthesis route for microfiltration membranes tailored to semi-crystalline polymers and their plastic forms.

2.
Polymers (Basel) ; 16(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891406

RESUMO

Traditional bulk adsorbents, employed for the removal of dyes and metal ions, often face the drawback of requiring an additional filtration system to separate the filtrate from the adsorbent. In this study, we address this limitation by embedding the adsorbent into the polymer matrix through a process involving dissolution-dispersion, spin-casting, and heat-stretching. Selective dissolution and dispersion facilitate the integration of the adsorbent into the polymer matrix. Meanwhile, spin-casting ensures the formation of a uniform and thin film structure, whereas heat-induced stretching produces a porous matrix with a reduced water contact angle. The adsorbent selectively captures dye molecules, while the porous structure contributes to water permeability. We utilized inexpensive and readily available materials, such as waste polyethylene and calcium carbonate, to fabricate membranes for the removal of methylene blue dye. The effects of various parameters, such as polymer-adsorbent ratio, initial dye concentration, and annealing temperature, were investigated. Equilibrium data were fitted to Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherms. The equilibrium data were best represented by the Langmuir isotherm, with maximum adsorption capacity of 35 mg/g and 43 mg/g at 25 °C and 45 °C, respectively. The membranes can be regenerated and recycled with a 97% dye removal efficiency. The study aims to present a template for adsorbent-embedded polymeric membranes for dye removal, in which adsorbent can be tailored to enhance adsorption capacity and efficiency.

3.
Sci Rep ; 14(1): 3608, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351100

RESUMO

Photocatalysts have developed into a successful strategy for degrading synthetic and organic toxins, such as chemicals and dyes, in wastewater. In this study, graphene oxide was reduced at different temperatures and used for degrading indigo carmine and neutral red dyes. The wide surface areas, strong adsorption sites, and oxygen functionalities of reduced graphene oxide (rGO) at 250 °C (rGO-250) produced more photocatalytic degradation efficiency and adsorption percentage. The catalyst dosage, initial dye concentration, solution pH and recyclability were all used to optimize the photocatalytic activity of rGO-250. This research presents a capable nano-adsorbent photocatalyst for the efficient degradation of organic dyes. GO and rGOs were also investigated for carbon dioxide (CO2) absorption properties. Results showed that rGO-250 has better CO2 adsorption properties than other rGOs. Overall, it was observed that rGO-250 has better photocatalytic and CO2 adsorption capabilities compared to graphene oxide reduced at different temperatures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA