Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1362397, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38841592

RESUMO

Introduction: Heart disease remains a complex and critical health issue, necessitating accurate and timely detection methods. Methods: In this research, we present an advanced machine learning system designed for efficient and precise diagnosis of cardiac disease. Our approach integrates the power of Random Forest and Ada Boost classifiers, along with incorporating data pre-processing techniques such as standard scaling and Recursive Feature Elimination (RFE) for feature selection. By leveraging the ensemble learning technique of stacking, we enhance the model's predictive performance by combining the strengths of multiple classifiers. Results: The evaluation metrics results demonstrate the superior accuracy and obtained the higher performance in terms of accuracy, 99.25%. The effectiveness of our proposed system compared to baseline models. Discussion: Furthermore, the utilization of this system within IoT-enabled healthcare systems shows promising potential for improving heart disease diagnosis and ultimately enhancing patient outcomes.

2.
Sci Rep ; 14(1): 6425, 2024 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-38494517

RESUMO

This research explores the use of gated recurrent units (GRUs) for automated brain tumor detection using MRI data. The GRU model captures sequential patterns and considers spatial information within individual MRI images and the temporal evolution of lesion characteristics. The proposed approach improves the accuracy of tumor detection using MRI images. The model's performance is benchmarked against conventional CNNs and other recurrent architectures. The research addresses interpretability concerns by employing attention mechanisms that highlight salient features contributing to the model's decisions. The proposed model attention-gated recurrent units (A-GRU) results show promising results, indicating that the proposed model surpasses the state-of-the-art models in terms of accuracy and obtained 99.32% accuracy. Due to the high predictive capability of the proposed model, we recommend it for the effective diagnosis of Brain tumors in the E-healthcare system.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo , Benchmarking , Imageamento por Ressonância Magnética , Compostos Radiofarmacêuticos
3.
Diagnostics (Basel) ; 13(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37627893

RESUMO

Brain tumor segmentation from Magnetic Resonance Images (MRI) is considered a big challenge due to the complexity of brain tumor tissues, and segmenting these tissues from the healthy tissues is an even more tedious challenge when manual segmentation is undertaken by radiologists. In this paper, we have presented an experimental approach to emphasize the impact and effectiveness of deep learning elements like optimizers and loss functions towards a deep learning optimal solution for brain tumor segmentation. We evaluated our performance results on the most popular brain tumor datasets (MICCAI BraTS 2020 and RSNA-ASNR-MICCAI BraTS 2021). Furthermore, a new Bridged U-Net-ASPP-EVO was introduced that exploits Atrous Spatial Pyramid Pooling to enhance capturing multi-scale information to help in segmenting different tumor sizes, Evolving Normalization layers, squeeze and excitation residual blocks, and the max-average pooling for down sampling. Two variants of this architecture were constructed (Bridged U-Net_ASPP_EVO v1 and Bridged U-Net_ASPP_EVO v2). The best results were achieved using these two models when compared with other state-of-the-art models; we have achieved average segmentation dice scores of 0.84, 0.85, and 0.91 from variant1, and 0.83, 0.86, and 0.92 from v2 for the Enhanced Tumor (ET), Tumor Core (TC), and Whole Tumor (WT) tumor sub-regions, respectively, in the BraTS 2021validation dataset.

4.
Int J Adv Manuf Technol ; : 1-13, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37360660

RESUMO

Soft sensors are data-driven devices that allow for estimates of quantities that are either impossible to measure or prohibitively expensive to do so. DL (deep learning) is a relatively new feature representation method for data with complex structures that has a lot of promise for soft sensing of industrial processes. One of the most important aspects of building accurate soft sensors is feature representation. This research proposed novel technique in automation of manufacturing industry where dynamic soft sensors are used in feature representation and classification of the data. Here the input will be data collected from virtual sensors and their automation-based historical data. This data has been pre-processed to recognize the missing value and usual problems like hardware failures, communication errors, incorrect readings, and process working conditions. After this process, feature representation has been done using fuzzy logic-based stacked data-driven auto-encoder (FL_SDDAE). Using the fuzzy rules, the features of input data have been identified with general automation problems. Then, for this represented features, classification process has been carried out using least square error backpropagation neural network (LSEBPNN) in which the mean square error while classification will be minimized with loss function of the data. The experimental results have been carried out for various datasets in automation of manufacturing industry in terms of computational time of 34%, QoS of 64%, RMSE of 41%, MAE of 35%, prediction performance of 94%, and measurement accuracy of 85% by proposed technique.

5.
Diagnostics (Basel) ; 13(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175015

RESUMO

Brain tumor segmentation from MRIs has always been a challenging task for radiologists, therefore, an automatic and generalized system to address this task is needed. Among all other deep learning techniques used in medical imaging, U-Net-based variants are the most used models found in the literature to segment medical images with respect to different modalities. Therefore, the goal of this paper is to examine the numerous advancements and innovations in the U-Net architecture, as well as recent trends, with the aim of highlighting the ongoing potential of U-Net being used to better the performance of brain tumor segmentation. Furthermore, we provide a quantitative comparison of different U-Net architectures to highlight the performance and the evolution of this network from an optimization perspective. In addition to that, we have experimented with four U-Net architectures (3D U-Net, Attention U-Net, R2 Attention U-Net, and modified 3D U-Net) on the BraTS 2020 dataset for brain tumor segmentation to provide a better overview of this architecture's performance in terms of Dice score and Hausdorff distance 95%. Finally, we analyze the limitations and challenges of medical image analysis to provide a critical discussion about the importance of developing new architectures in terms of optimization.

6.
Diagnostics (Basel) ; 13(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36980401

RESUMO

The aedes mosquito-borne dengue viruses cause dengue fever, an arboviral disease (DENVs). In 2019, the World Health Organization forecasts a yearly occurrence of infections from 100 million to 400 million, the maximum number of dengue cases ever testified worldwide, prompting WHO to label the virus one of the world's top ten public health risks. Dengue hemorrhagic fever can progress into dengue shock syndrome, which can be fatal. Dengue hemorrhagic fever can also advance into dengue shock syndrome. To provide accessible and timely supportive care and therapy, it is necessary to have indispensable practical instruments that accurately differentiate Dengue and its subcategories in the early stages of illness development. Dengue fever can be predicted in advance, saving one's life by warning them to seek proper diagnosis and treatment. Predicting infectious diseases such as dengue is difficult, and most forecast systems are still in their primary stages. In developing dengue predictive models, data from microarrays and RNA-Seq have been used significantly. Bayesian inferences and support vector machine algorithms are two examples of statistical methods that can mine opinions and analyze sentiment from text. In general, these methods are not very strong semantically, and they only work effectively when the text passage inputs are at the level of the page or the paragraph; they are poor miners of sentiment at the level of the sentence or the phrase. In this research, we propose to construct a machine learning method to forecast dengue fever.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA