Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proteins ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264222

RESUMO

Considering p53's pivotal role as a tumor suppressor protein, proactive identification and characterization of potentially harmful p53 mutations are crucial before they appear in the population. To address this, four computational prediction tools-SIFT, Polyphen-2, PhD-SNP, and MutPred2-utilizing sequence-based and machine-learning algorithms, were employed to identify potentially deleterious p53 nsSNPs (nonsynonymous single nucleotide polymorphisms) that may impact p53 structure, dynamics, and binding with DNA. These computational methods identified three variants, namely, C141Y, C238S, and L265P, as detrimental to p53 stability. Furthermore, molecular dynamics (MD) simulations revealed that all three variants exhibited heightened structural flexibility compared to the native protein, especially the C141Y and L265P mutations. Consequently, due to the altered structure of mutant p53, the DNA-binding affinity of all three variants decreased by approximately 1.8 to 9.7 times compared to wild-type p53 binding with DNA (14 µM). Notably, the L265P mutation exhibited an approximately ten-fold greater reduction in binding affinity. Consequently, the presence of the L265P mutation in p53 could pose a substantial risk to humans. Given that p53 regulates abnormal tumor growth, this research carries significant implications for surveillance efforts and the development of anticancer therapies.

2.
Nat Commun ; 15(1): 8231, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39313510

RESUMO

In Bangladesh, Vibrio cholerae lineages are undergoing genomic evolution, with increased virulence and spreading ability. However, our understanding of the genomic determinants influencing lineage transmission and disease severity remains incomplete. Here, we developed a computational framework using machine-learning, genome scale metabolic modelling (GSSM) and 3D structural analysis, to identify V. cholerae genomic traits linked to lineage transmission and disease severity. We analysed in-patients isolates from six Bangladeshi regions (2015-2021), and uncovered accessory genes and core SNPs unique to the most recent dominant lineage, with virulence, motility and bacteriophage resistance functions. We also found a strong correlation between V. cholerae genomic traits and disease severity, with some traits overlapping those driving lineage transmission. GSMM and 3D structure analysis unveiled a complex interplay between transcription regulation, protein interaction and stability, and metabolic networks, associated to lifestyle adaptation, intestinal colonization, acid tolerance and symptom severity. Our findings support advancing therapeutics and targeted interventions to mitigate cholera spread.


Assuntos
Cólera , Genoma Bacteriano , Vibrio cholerae O1 , Cólera/microbiologia , Cólera/transmissão , Humanos , Bangladesh/epidemiologia , Genoma Bacteriano/genética , Vibrio cholerae O1/genética , Vibrio cholerae O1/patogenicidade , Vibrio cholerae O1/isolamento & purificação , Virulência/genética , Genômica , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Aprendizado de Máquina
3.
Microbiol Resour Announc ; 13(4): e0000124, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38393329

RESUMO

Here, we report the whole genome sequence of Stutzerimonas stutzeri strain NGHE31, isolated from Dekhar Haor, following the 2017 flash flood that resulted in mass die-offs of local wildlife. The predicted genome size is 4,434,670 bp, with 63.97% GC content, 4,035 coding sequences, 3 rRNAs, and 50 tRNAs.

4.
BMC Genomics ; 23(1): 802, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36471260

RESUMO

BACKGROUND: Acinetobacter calcoaceticus-A. baumannii (ACB) complex pathogens are known for their prevalence in nosocomial infections and extensive antimicrobial resistance (AMR) capabilities. While genomic studies worldwide have elucidated the genetic context of antibiotic resistance in major international clones (ICs) of clinical Acinetobacter spp., not much information is available from Bangladesh. In this study, we analysed the AMR profiles of 63 ACB complex strains collected from Dhaka, Bangladesh. Following this, we generated draft genomes of 15 of these strains to understand the prevalence and genomic environments of AMR, virulence and mobilization associated genes in different Acinetobacter clones. RESULTS: Around 84% (n = 53) of the strains were extensively drug resistant (XDR) with two showing pan-drug resistance. Draft genomes generated for 15 strains confirmed 14 to be A. baumannii while one was A. nosocomialis. Most A. baumannii genomes fell under three clonal complexes (CCs): the globally dominant CC1 and CC2, and CC10; one strain had a novel sequence type (ST). AMR phenotype-genotype agreement was observed and the genomes contained various beta-lactamase genes including blaOXA-23 (n = 12), blaOXA-66 (n = 6), and blaNDM-1 (n = 3). All genomes displayed roughly similar virulomes, however some virulence genes such as the Acinetobactin bauA and the type IV pilus gene pilA displayed high genetic variability. CC2 strains carried highest levels of plasmidic gene content and possessed conjugative elements carrying AMR genes, virulence factors and insertion sequences. CONCLUSION: This study presents the first comparative genomic analysis of XDR clinical Acinetobacter spp. from Bangladesh. It highlights the prevalence of different classes of beta-lactamases, mobilome-derived heterogeneity in genetic architecture and virulence gene variability in prominent Acinetobacter clonal complexes in the country. The findings of this study would be valuable in understanding the genomic epidemiology of A. baumannii clones and their association with closely related pathogenic species like A. nosocomialis in Bangladesh.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Proteínas de Bactérias , Farmacorresistência Bacteriana Múltipla , Humanos , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Infecções por Acinetobacter/epidemiologia , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bangladesh/epidemiologia , beta-Lactamases/genética , Farmacorresistência Bacteriana Múltipla/genética , Genômica , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus
5.
FEMS Microbiol Lett ; 367(6)2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-32129839

RESUMO

Morganella morganii, a gram negative, facultative anaerobic bacterium belonging to the Proteeae tribe of the Morganellaceae family, is an unusual opportunistic pathogen mainly responsible for nosocomial and urinary tract infections. While cattle have long been established as a source of a few zoonotic pathogens, no such data has been recorded for M. morganii despite its ubiquitous presence in nature and a number of animal hosts. In this study, draft genomes were produced of three M. morganii isolates from Bangladeshi cattle. The three isolates, named B2, B3 and B5, possessed an average genome size of 3.9 Mp, a GC% of ∼51% and pan and core genomes of 4637 and 3812 genes, respectively. All strains were bearers of the qnrD1 carrying plasmid Col3M and possessed roughly similar virulence profiles and prophage regions. The strains also carried genes that were unique when compared with other publicly available M. morganii genomes. Many of these genes belonged to metabolic pathways associated with adaptation to environmental stresses and were predicted in silico to be borne in genomic islands. The findings of this study expand on the current understanding of M. morganii''s genomic nature and its adaptation in cattle.


Assuntos
Genoma Bacteriano/genética , Morganella morganii/genética , Reto/microbiologia , Sequenciamento Completo do Genoma , Animais , Bangladesh , Bovinos , Ilhas Genômicas/genética , Morganella morganii/isolamento & purificação , Morganella morganii/patogenicidade , Prófagos/genética , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA