Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38038676

RESUMO

TiO2 nanotube arrays grown through electrochemical anodization in a formamide-based electrolyte (TNTA-FA) exhibited a whole host of unusual properties compared to nanotubes grown in the conventional ethylene glycol-based electrolyte (TNTA-EG). TNTA-FA exhibited shorter phonon lifetimes, lower lattice strain, more visible light absorption, lower work function, and a highly unusual adsorbate structure consisting of physisorbed and chemisorbed CO along with linearly adsorbed CO2 and various monodentate and bidentate carbonate species. The observation of adsorbed CO in the dark is highly unusual and indicates spontaneous deoxygenation of CO2 on the surface of TNTA-FA. The significance of this finding is that the formation of CO2•- is no longer the rate-limiting bottleneck for the reduction of CO2 on TNTA-FA surfaces as it is for all TiO2 surfaces. TNTA-FA samples are strongly colored (inclusive of a fluorescent green color) and consist of rounded, vertically oriented hollow cylinders as opposed to the honeycomb-like morphology of TNTA-EG arranged in an approximate triangular lattice. The photocatalytic activity was tested through the CO2 photoreduction and dye degradation tests. Formamide-based nanotubes outperformed the EG-based nanotubes by almost 1.7 and 2 times, respectively, in CO2 reduction and dye degradation tests done on methylene blue, brilliant green, and rhodamine B dyes. These results are attributed to stronger surface band bending in TNTA-FA which facilitates more efficient separation of photogenerated electron-hole pairs.

2.
Nanotechnology ; 34(30)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37158486

RESUMO

A new type of heavy-metal free single-element nanomaterial, called sulfur quantum dots (SQDs), has gained significant attention due to its advantages over traditional semiconductor QDs for several biomedical and optoelectronic applications. A straightforward and rapid synthesis approach for preparing highly fluorescent SQDs is needed to utilize this nanomaterial for technological applications. Until now, only a few synthesis approaches have been reported; however, these approaches are associated with long reaction times and low quantum yields (QY). Herein, we propose a novel optimized strategy to synthesize SQDs using a mix of probe sonication and heating, which reduces the reaction time usually needed from 125 h to a mere 15 min. The investigation employs cavitation and vibration effects of high energy acoustic waves to break down the bulk sulfur into nano-sized particles in the presence of highly alkaline medium and oleic acid. In contrast to previous reports, the obtained SQDs exhibited excellent aqueous solubility, desirable photostability, and a relatively high photoluminescence QY up to 10.4% without the need of any post-treatment. Additionally, the as-synthesized SQDs show excitation-dependent emission and excellent stability in different pH (2-12) and temperature (20 °C-80 °C) environments. Hence, this strategy opens a new pathway for rapid synthesis of SQDs and may facilitate the use of these materials for biomedical and optoelectronic applications.

3.
Nanomaterials (Basel) ; 13(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177028

RESUMO

Solar energy harvesting using semiconductor photocatalysis offers an enticing solution to two of the biggest societal challenges, energy scarcity and environmental pollution. After decades of effort, no photocatalyst exists which can simultaneously meet the demand for excellent absorption, high quantum efficiency and photochemical resilience/durability. While CdS is an excellent photocatalyst for hydrogen evolution, pollutant degradation and organic synthesis, photocorrosion of CdS leads to the deactivation of the catalyst. Surface passivation of CdS with 2D graphitic carbon nitrides (CN) such as g-C3N4 and C3N5 has been shown to mitigate the photocorrosion problem but the poor oxidizing power of photogenerated holes in CN limits the utility of this approach for photooxidation reactions. We report the synthesis of exfoliated 2D nanosheets of a modified carbon nitride constituted of tris-s-triazine (C6N7) linked pyromellitic dianhydride polydiimide (CN:PDI) with a deep oxidative highest occupied molecular orbital (HOMO) position, which ensures sufficient oxidizing power for photogenerated holes in CN. The heterojunction formed by the wrapping of mono-/few layered CN:PDI on CdS nanorods (CdS/CN:PDI) was determined to be an excellent photocatalyst for oxidation reactions including photoelectrochemical water splitting, dye decolorization and the photocatalytic conversion of benzyl alcohol to benzaldehyde. Extensive structural characterization using HR-TEM, Raman, XPS, etc., confirmed wrapping of few-layered CN:PDI on CdS nanorods. The increased photoactivity in CdS/CN:PDI catalyst was ascribed to facile electron transfer from CdS to CN:PDI in comparison to CdS/g-C3N4, leading to an increased electron density on the surface of the photocatalyst to drive chemical reactions.

4.
Nanotechnology ; 34(20)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36787629

RESUMO

Blended films comprising poly(butyl acrylate) (PBA)-grafted cellulose nanocrystals (CNCs) and poly(3-hexylthiophene) (P3HT), exhibited more intense photoluminescence (PL) and longer PL emission lifetimes compared to pristine P3HT films. Optical absorption and photoluminescence spectra indicated reduced torsional disorder i.e. enhanced backbone planarity in the P3HT@CNC blended composites compared to the bare P3HT. Such molecule-level geometrical modification resulted in both smaller interchain and higher intrachain exciton bandwidth in the blended composites compared to the bare P3HT, because of reduced interchain interactions and enhanced intrachain order. These results indicate a potential switch of the aggregation behavior from dominant H-aggregates to J-aggregates, supported by Raman spectroscopy. The reorganization of micromolecular structure and concomitant macroscopic aggregation of the conjugated polymer chains resulted in a longer conjugation length for the P3HT@CNC blended composites compared to the bare P3HT. Additionally, this nanoscale morphological change produced a reduction in the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap of the blends, evidenced from optical absorption spectra. Classical molecular dynamics simulation studies predicted the probability of enhanced planarity in the polymer backbone following interactions with CNC surfaces. Theoretical results from density functional theory calculations corroborate the experimentally observed reduction of optical bandgap in the blends compared to bare P3HT. The blended composite outperformed the bare P3HT in nitro-group PL sensing tests with a pronounced difference in the reaction kinetics. While the PL quenching dynamics for bare P3HT followed Stern-Volmer kinetics, the P3HT@CNC blended composite exhibited a drastic deviation from the same. This work shows the potential of a functionalized rod-like biopolymer in tuning the optoelectronic properties of a technologically important polymeric organic semiconductor through control of the nanoscale morphology.

5.
ACS Appl Mater Interfaces ; 14(21): 24309-24320, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35603941

RESUMO

We report a unique photoanode architecture involving TiO2, g-C3N4, and AuNPs wherein a synergistic enhancement of the photoelectrochemical (PEC) performance was obtained with photocurrent densities as high as 3 mA cm-2 under AM1.5G 1 sun illumination. The PEC performance was highly stable and reproducible, and a photoresponse was obtained down to a photon energy of 2.4 eV, close to the interband damping threshold of Au. The photocurrent enhancement was maximized when the Au plasmon band strongly overlapped the g-C3N4 emission band. Our photoanode architecture, which involved AuNPs buried under TiO2 and a plasmon-induced resonance energy transfer-like interaction between g-C3N4 quantum dots (CNQDs) and AuNPs, solved four major problems associated with plasmonic photoelectrocatalysis─it reduced recombination by limiting eliminating direct electrolyte access to AuNPs, it facilitated electron extraction through single-crystal TiO2 nanorod percolation pathways, it facilitated hole extraction through a defective TiO2 seed layer or canopy, and it expanded the range of visible light harvesting by pumping the Au surface plasmons from CNQDs through exciton-to-plasmon resonant energy transfer.

6.
Nanotechnology ; 33(5)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34633304

RESUMO

We present the electrical properties of zinc phthalocyanine covalently conjugated to cellulose nanocrystals (CNC@ZnPc). Thin films of CNC@ZnPc sandwiched between two gold electrodes showed pronounced hysteresis in their current-voltage characteristics. The layered metal-organic-metal sandwich devices exhibit distinct high and low conductive states when bias is applied, which can be used to store information. Density functional theory results confirmed wave function overlap between CNC and ZnPc in CNC@ZnPc, and helped visualize the lowest (lowest unoccupied molecular orbital) and highest molecular orbitals (highest occupied molecular orbital) in CNC@ZnPc. These results pave the way forward for all-organic electronic devices based on low cost, earth abundant CNCs and metallophthalocyanines.

7.
ACS Appl Mater Interfaces ; 13(40): 47418-47439, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34608803

RESUMO

We present a potential solution to the problem of extraction of photogenerated holes from CdS nanocrystals and nanowires. The nanosheet form of C3N5 is a low-band-gap (Eg = 2.03 eV), azo-linked graphenic carbon nitride framework formed by the polymerization of melem hydrazine (MHP). C3N5 nanosheets were either wrapped around CdS nanorods (NRs) following the synthesis of pristine chalcogenide or intercalated among them by an in situ synthesis protocol to form two kinds of heterostructures, CdS-MHP and CdS-MHPINS, respectively. CdS-MHP improved the photocatalytic degradation rate of 4-nitrophenol by nearly an order of magnitude in comparison to bare CdS NRs. CdS-MHP also enhanced the sunlight-driven photocatalytic activity of bare CdS NWs for the decolorization of rhodamine B (RhB) by a remarkable 300% through the improved extraction and utilization of photogenerated holes due to surface passivation. More interestingly, CdS-MHP provided reaction pathway control over RhB degradation. In the absence of scavengers, CdS-MHP degraded RhB through the N-deethylation pathway. When either hole scavenger or electron scavenger was added to the RhB solution, the photocatalytic activity of CdS-MHP remained mostly unchanged, while the degradation mechanism shifted to the chromophore cleavage (cycloreversion) pathway. We investigated the optoelectronic properties of CdS-C3N5 heterojunctions using density functional theory (DFT) simulations, finite difference time domain (FDTD) simulations, time-resolved terahertz spectroscopy (TRTS), and photoconductivity measurements. TRTS indicated high carrier mobilities >450 cm2 V-1 s-1 and carrier relaxation times >60 ps for CdS-MHP, while CdS-MHPINS exhibited much lower mobilities <150 cm2 V-1 s-1 and short carrier relaxation times <20 ps. Hysteresis in the photoconductive J-V characteristics of CdS NWs disappeared in CdS-MHP, confirming surface passivation. Dispersion-corrected DFT simulations indicated a delocalized HOMO and a LUMO localized on C3N5 in CdS-MHP. C3N5, with its extended π-conjugation and low band gap, can function as a shuttle to extract carriers and excitons in nanostructured heterojunctions, and enhance performance in optoelectronic devices. Our results demonstrate how carrier dynamics in core-shell heterostructures can be manipulated to achieve control over the reaction mechanism in photocatalysis.

8.
ACS Appl Mater Interfaces ; 13(36): 42741-42752, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34476945

RESUMO

The harvesting of hot carriers produced by plasmon decay to generate electricity or drive a chemical reaction enables the reduction of the thermalization losses associated with supra-band gap photons in semiconductor photoelectrochemical (PEC) cells. Through the broadband harvesting of light, hot-carrier PEC devices also produce a sensitizing effect in heterojunctions with wide-band gap metal oxide semiconductors possessing good photostability and catalytic activity but poor absorption of visible wavelength photons. There are several reports of hot electrons in Au injected over the Schottky barrier into crystalline TiO2 and subsequently utilized to drive a chemical reaction but very few reports of hot hole harvesting. In this work, we demonstrate the efficient harvesting of hot holes in Au nanoparticles (Au NPs) covered with a thin layer of amorphous TiO2 (a-TiO2). Under AM1.5G 1 sun illumination, photoanodes consisting of a single layer of ∼50 nm diameter Au NPs coated with a 10 nm shell of a-TiO2 (Au@a-TiO2) generated 2.5 mA cm-2 of photocurrent in 1 M KOH under 0.6 V external bias, rising to 3.7 mA cm-2 in the presence of a hole scavenger (methanol). The quantum yield for hot-carrier-mediated photocurrent generation was estimated to be close to unity for high-energy photons (λ < 420 nm). Au@a-TiO2 photoelectrodes produced a small positive photocurrent of 0.1 mA cm-2 even at a bias of -0.6 V indicating extraction of hot holes even at a strong negative bias. These results together with density functional theory modeling and scanning Kelvin probe force microscope data indicate fast injection of hot holes from Au NPs into a-TiO2 and light harvesting performed near-exclusively by Au NPs. For comparison, Au NPs coated with a 10 nm shell of Al2O3 (Au@Al2O3) generated 0.02 mA cm-2 of photocurrent in 1 M KOH under 0.6 V external bias. These results underscore the critical role played by a-TiO2 in the extraction of holes in Au@a-TiO2 photoanodes, which is not replicated by an ordinary dielectric shell. It is also demonstrated here that an ultrathin photoanode (<100 nm in maximum thickness) can efficiently drive sunlight-driven water splitting.

9.
Nanotechnology ; 32(48)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298524

RESUMO

Owing to their unique structural and electronic properties such as layered structure with tuneable bandgap and high electron mobility, 2D materials have emerged as promising candidates for photocatalysis. Recently, bismuth oxyselenide (Bi2O2Se), a member of bismuth oxychalcogenide's family has shown great potential in high-speed field-effect transistors, infrared photodetectors, ferroelectric devices, and electrochemical sensors. However, the potential of Bi2O2Se in photocatalysis has not yet been explored. In the current work, Bi2O2Se nanosheets with an average size of ∼170 nm and a lattice strain of 0.01 were synthesized at room temperature using a facile solution-processed method and the as-synthesized material was investigated with various characterization techniques such as x-ray diffraction, FE-SEM, UV-vis spectroscopy. The bandgap for the indirect transition in Bi2O2Se nanosheets was estimated to be 1.19 eV. Further, the visible-light-driven photocatalytic degradation of methylene blue (MB) dye using Bi2O2Se as a photocatalyst is presented. The photocatalytic experiments demonstrate the promising photocatalytic ability of Bi2O2Se as it leads to 25.06% degradation of MB within 80 min of light illumination. The effect of active species trapping agents (carrier and radical scavengers) on photocatalytic activity is also presented and discussed.

10.
Nanotechnology ; 32(48)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-33706303

RESUMO

Quinary and senary non-stoichiometric double perovskites such as Ba2Ca0.66Nb1.34-xFexO6-δ(BCNF) have been utilized for gas sensing, solid oxide fuel cells and thermochemical CO2reduction. Herein, we examined their potential as narrow bandgap semiconductors for use in solar energy harvesting. A cobalt co-doped BCNF, Ba2Ca0.66Nb0.68Fe0.33Co0.33O6-δ(BCNFCo), exhibited an optical absorption edge at ∼800 nm,p-type conduction and a distinct photoresponse up to 640 nm while demonstrating high thermochemical stability. A nanocomposite of BCNFCo and g-C3N4(CN) was prepared via a facile solvent-assisted exfoliation/blending approach using dichlorobenzene and glycerol at a moderate temperature. The exfoliation of g-C3N4followed by wrapping on perovskite established an effective heterojunction between the materials for charge separation. The conjugated 2D sheets of CN enabled better charge migration resulting in increased photoelectrochemical performance. A blend composed of 40 wt% perovskites and CN performed optimally, whilst achieving a photocurrent density as high as 1.5 mA cm-2for sunlight-driven water-splitting with a Faradaic efficiency as high as ∼88%.

11.
ACS Appl Mater Interfaces ; 13(6): 7248-7258, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33539093

RESUMO

Cu/TiO2 is a well-known photocatalyst for the photocatalytic transformation of CO2 into methane. The formation of C2+ products such as ethane and ethanol rather than methane is more interesting due to their higher energy density and economic value, but the formation of C-C bonds is currently a major challenge in CO2 photoreduction. In this context, we report the dominant formation of a C2 product, namely, ethane, from the gas-phase photoreduction of CO2 using TiO2 nanotube arrays (TNTAs) decorated with large-sized (80-200 nm) Ag and Cu nanoparticles without the use of a sacrificial agent or hole scavenger. Isotope-labeled mass spectrometry was used to verify the origin and identity of the reaction products. Under 2 h AM1.5G 1-sun illumination, the total rate of hydrocarbon production (methane + ethane) was highest for AgCu-TNTA with a total CxH2x+2 rate of 23.88 µmol g-1 h-1. Under identical conditions, the CxH2x+2 production rates for Ag-TNTA and Cu-TNTA were 6.54 and 1.39 µmol g-1 h-1, respectively. The ethane selectivity was the highest for AgCu-TNTA with 60.7%, while the ethane selectivity was found to be 15.9 and 10% for the Ag-TNTA and Cu-TNTA, respectively. Adjacent adsorption sites in our photocatalyst develop an asymmetric charge distribution due to quadrupole resonances in large metal nanoparticles and multipole resonances in Ag-Cu heterodimers. Such an asymmetric charge distribution decreases adsorbate-adsorbate repulsion and facilitates C-C coupling of reaction intermediates, which otherwise occurs poorly in TNTAs decorated with small metal nanoparticles.

12.
ACS Appl Mater Interfaces ; 13(3): 4340-4351, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33455157

RESUMO

We demonstrate the formation of Ta2O5 nanodimple arrays on technologically relevant non-native substrates through a simple anodization and annealing process. The anodizing voltage determines the pore diameter (25-60 nm), pore depth (2-9 nm), and rate of anodization (1-2 nm/s of Ta consumed). The formation of Ta dimples after delamination of Ta2O5 nanotubes occurs within a range of voltages from 7 to 40 V. The conversion of dimples from Ta into Ta2O5 changes the morphology of the nanodimples but does not impact dimple ordering. Electron energy loss spectroscopy indicated an electronic band gap of 4.5 eV and a bulk plasmon band with a maximum of 21.5 eV. Gold nanoparticles (Au NPs) were coated on Ta2O5 nanodimple arrays by annealing sputtered Au thin films on Ta nanodimple arrays to simultaneously form Au NPs and convert Ta to Ta2O5. Au NPs produced this way showed a localized surface plasmon resonance maximum at 2.08 eV, red-shifted by ∼0.3 eV from the value in air or on SiO2 substrates. Lumerical simulations suggest a partial embedding of the Au NPs to explain this magnitude of the red shift. The resulting plasmonic heterojunctions exhibited a significantly higher ensemble-averaged local field enhancement than Au NPs on quartz substrates and demonstrated much higher catalytic activity for the plasmon-driven photo-oxidation of p-aminothiophenol to p,p'-dimercaptoazobenzene.

13.
Nanotechnology ; 32(37)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-32619996

RESUMO

Cu2O is a promising earth-abundant semiconductor photocathode for sunlight-driven water splitting. Characterization results are presented to show how the photocurrent density (Jph), onset potential (Eonset), band edges, carrier density (NA), and interfacial charge transfer resistance (Rct) are affected by the morphology and method used to deposit Cu2O on a copper foil. Mesoscopic and planar morphologies exhibit large differences in the values ofNAandRct. However, these differences are not observed to translate to other photocatalytic properties of Cu2O. Mesoscopic and planar morphologies exhibit similar bandgap (e.g.) and flat band potential (Efb) values of 1.93 ± 0.04 eV and 0.48 ± 0.06 eV respectively.Eonsetof 0.48 ± 0.04 eV obtained for these systems is close to theEfbindicating negligible water reduction overpotential. Electrochemically deposited planar Cu2O provides the highest photocurrent density of 5.0 mA cm-2at 0 V vs reversible hydrogen electrode (RHE) of all the morphologies studied. The photocurrent densities observed in this study are among the highest reported values for bare Cu2O photocathodes.

14.
Carbohydr Polym ; 246: 116393, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747225

RESUMO

Cellulose nanocrystals (CNC) are the focus of significant attention in the broad area of sustainable technologies for possessing many desirable properties such as a large surface area, high strength and stiffness, outstanding colloidal stability, excellent biocompatibility and biodegradability, low weight and abundance in nature. Yet, a fundamental understanding of the micro- and nanoscale electrical charge distribution on nanocellulose still remains elusive. Here we present direct quantification and mapping of surface charges on CNCs at ambient condition using advanced surface probe microscopy techniques such as Kelvin probe force microscopy (KPFM), electrostatic force microscopy (EFM) and force-distance (F-D) curve measurements. We show by EFM measurements that the surface charge in the solid-state (as contrasted with liquid dispersions) present at ambient condition on CNCs provided by Innotech Alberta is intrinsically negative and the charge density is estimated to be 13 µC/cm2. These charges also result in CNCs having two times the adhesive force exhibited by SiO2 substrates in adhesion mapping studies. The origin of negative surface charge is likely due to the formation of CNCs through sulfuric acid hydrolysis where sulfate half esters groups remained on the surface (Johnston et al., 2018).


Assuntos
Celulose/química , Microscopia de Força Atômica/métodos , Microscopia de Varredura por Sonda/métodos , Nanopartículas/química , Hidrólise , Fenômenos Físicos , Dióxido de Silício , Ácidos Sulfúricos/química , Propriedades de Superfície
15.
ACS Appl Mater Interfaces ; 12(39): 43992-44006, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32530267

RESUMO

We report highly fluorescent cellulose nanocrystals (CNCs) formed by conjugating a carboxylated zinc phthalocyanine (ZnPc) to two different types of CNCs. The conjugated nanocrystals (henceforth called ZnPc@CNCs) were bright green in color and exhibited absorption and emission maxima at ∼690 and ∼715 nm, respectively. The esterification protocol employed to covalently bind carboxylated ZnPc to surface hydroxyl group rich CNCs was expected to result in a monolayer of ZnPc on the surface of the CNCs. However, dynamic light scattering (DLS) studies indicated a large increase in the hydrodynamic radius of CNCs following conjugation to ZnPc, which suggests the binding of multiple ZnPc molecular layers on the CNC surface. This binding could be through co-facial π-stacking of ZnPc, where ZnPc metallophthalocyanine rings are horizontal to the CNC surface. The other possible binding mode would give rise to conjugated systems where ZnPc metallophthalocyanine rings are oriented vertically on the CNC surface. Density functional theory based calculations showed stable geometry following the conjugation protocol that involved covalently attached ester bond formation. The conjugates demonstrated superior performance for potential sensing applications through higher photoluminescence quenching capabilities compared to pristine ZnPc.

16.
Nanotechnology ; 31(36): 365301, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32191930

RESUMO

Silver nanoislands are key platforms for plasmonic photocatalysis, SERS sensing and optical metamaterials due to their localized surface plasmon resonances. The low intrinsic loss in Ag enables high local electromagnetic field enhancements. Solution-based fabrication techniques, while cheap, result in highly non-reproducible plasmonic substrates with wide sample-to-sample variability in geometry, optical resonances and Q-factors. Herein, we present a non-lithographic method of forming silver nanoislands based on sputter deposition of Ag films followed by elevated temperature annealing to induce spontaneous dewetting. The resulting plasmonic substrates show reproducible, well-defined LSPR resonances with high ensemble Q-factors whose optical properties could be modeled using spectroscopic ellipsometry to yield n and k values across the visible range. UV-Vis-NIR, and XRD analyses define the optical and crystallographic characteristics of the Ag nanoisland samples. FESEM was utilized to discern the geometry and architecture of the Ag nanoisland as well as their uniformity and monodispersity. Our vacuum deposited Ag nanoislands demonstrated excellent photocatalytic activity for the transformation of 4-nitrobenzenethiol (4-NBT) and 4-aminothiophenol (PATP) into p,p'-dimercaptoazobenzene (DMAB).

17.
ACS Appl Mater Interfaces ; 12(10): 11467-11478, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-31904215

RESUMO

Leading edge p-i-n type halide perovskite solar cells (PSCs) severely underperform n-i-p PSCs. p-i-n type PSCs that use PEDOT:PSS hole transport layers (HTLs) struggle to generate open-circuit photovoltage values higher than 1 V. NiO HTLs have shown greater promise in achieving high Voc values albeit inconsistently. In this report, a NiO nanomesh with Ni3+ defect grown by the hydrothermal method was used to obtain PSCs with Voc values that consistently exceeded 1.10 V (champion Voc = 1.14 V). A champion device photoconversion efficiency of 17.75% was observed. Density functional theory modeling was used to understand the interfacial properties of the NiO/perovskite interface. The PCE of PSCs constructed using the Ni3+-doped NiO nanomesh HTL was ∼34% higher than that of conventional compact NiO-based perovskite solar cells. A suite of characterization techniques such as transmission electron microscopy, field emission scanning electron microscopy, intensity-modulated photocurrent spectroscopy, intensity-modulated photovoltage spectroscopy, time-resolved photoluminescence, steady-state photoluminescence, and Kelvin probe force microscopy provided evidence of better film quality, enhanced charge transfer, and suppressed charge recombination in PSCs based on hydrothermally grown NiO nanostructures.

18.
Nanotechnology ; 31(8): 084001, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31618713

RESUMO

A fluorine-doped, chlorine-intercalated carbon nitride (CNF-Cl) photocatalyst has been synthesized for simultaneous improvements in light harvesting capability along with suppression of charge recombination in bulk g-C3N4. The formation of heterojunctions of these CNF-Cl nanosheets with low bandgap, earth abundant bismuth oxyiodide (BiOI) was achieved, and the synthesized heterojunctions were tested as active photoanodes in photoelectrochemical water splitting experiments. BiOI/CNF-Cl heterojunctions exhibited extended light harvesting with a band-edge of 680 nm and generated photocurrent densities approaching 1.3 mA cm-2 under AM1.5 G one sun illumination. Scanning Kelvin probe force microscopy under optical bias showed a surface potential of 207 mV for the 50% BiOI/CNF-Cl nanocomposite, while pristine CNF-Cl and BiOI had surface photopotential values of 83 mV and 98 mV, respectively, which in turn, provided direct evidence of superior charge separation in the heterojunction blends. Enhanced charge carrier separation and improved light harvesting capability in BiOI/CNF-Cl hybrids were found to be the dominant factors in increased photocurrent, compared to the pristine constituent materials.

19.
J Am Chem Soc ; 141(13): 5415-5436, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30762369

RESUMO

Modification of carbon nitride based polymeric 2D materials for tailoring their optical, electronic and chemical properties for various applications has gained significant interest. The present report demonstrates the synthesis of a novel modified carbon nitride framework with a remarkable 3:5 C:N stoichiometry (C3N5) and an electronic bandgap of 1.76 eV, by thermal deammoniation of the melem hydrazine precursor. Characterization revealed that in the C3N5 polymer, two s-heptazine units are bridged together with azo linkage, which constitutes an entirely new and different bonding fashion from g-C3N4 where three heptazine units are linked together with tertiary nitrogen. Extended conjugation due to overlap of azo nitrogens and increased electron density on heptazine nucleus due to the aromatic π network of heptazine units lead to an upward shift of the valence band maximum resulting in bandgap reduction down to 1.76 eV. XRD, He-ion imaging, HR-TEM, EELS, PL, fluorescence lifetime imaging, Raman, FTIR, TGA, KPFM, XPS, NMR and EPR clearly show that the properties of C3N5 are distinct from pristine carbon nitride (g-C3N4). When used as an electron transport layer (ETL) in MAPbBr3 based halide perovskite solar cells, C3N5 outperformed g-C3N4, in particular generating an open circuit photovoltage as high as 1.3 V, while C3N5 blended with MA xFA1- xPb(I0.85Br0.15)3 perovskite active layer achieved a photoconversion efficiency (PCE) up to 16.7%. C3N5 was also shown to be an effective visible light sensitizer for TiO2 photoanodes in photoelectrochemical water splitting. Because of its electron-rich character, the C3N5 material displayed instantaneous adsorption of methylene blue from aqueous solution reaching complete equilibrium within 10 min, which is significantly faster than pristine g-C3N4 and other carbon based materials. C3N5 coupled with plasmonic silver nanocubes promotes plasmon-exciton coinduced surface catalytic reactions reaching completion at much low laser intensity (1.0 mW) than g-C3N4, which showed sluggish performance even at high laser power (10.0 mW). The relatively narrow bandgap and 2D structure of C3N5 make it an interesting air-stable and temperature-resistant semiconductor for optoelectronic applications while its electron-rich character and intrasheet cavity make it an attractive supramolecular adsorbent for environmental applications.

20.
Nanoscale Adv ; 1(4): 1460-1471, 2019 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-36132597

RESUMO

Heterojunctions of the low bandgap semiconductor bismuth oxyiodide (BiOI) with bulk multilayered graphitic carbon nitride (g-C3N4) and few layered graphitic carbon nitride sheets (g-C3N4-S) are synthesized and investigated as an active photoanode material for sunlight driven water splitting. HR-TEM and elemental mapping reveals formation of a unique heterostructure between BiOI platelets and the carbon nitride (g-C3N4 and g-C3N4-S) network that consisted of dendritic BiOI nanoplates surrounded by g-C3N4 sheets. The presence of BiOI in g-C3N4-S/BiOI and g-C3N4-S/BiOI nanocomposites extends the visible light absorption profile from 500 nm up to 650 nm. Due to excellent charge separation in g-C3N4/BiOI and g-C3N4-S/BiOI, evident from quenching of the carbon nitride photoluminescence (PL) and a decrease in the PL lifetime, a significant increase in photoelectrochemical performance is observed for both types of g-C3N4-BiOI heterojunctions. In comparison to heterojunctions of bulk g-C3N4 with BiOI, the nanocomposite consisting of few layered sheets of g-C3N4 and BiOI exhibits higher photocurrent density due to lower recombination in few layered sheets. A synergistic trap passivation and charge separation is found to occur in the g-C3N4-S/BiOI nanocomposite heterostructure which results in a higher photocurrent and a lower charge transfer resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA