Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(7): 6242-6255, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38305347

RESUMO

The emergence of SARS-CoV-2 in 2019 led to the global COVID-19 pandemic, highlighting the urgency for developing cost-effective and non-invasive methods to detect diseases at an early stage. Human breath, rich in volatile organic compounds (VOCs), is promising for cost-effective and rapid disease detection, with specific VOCs like methanol, ethanal, butanone, acetone, and ethyl butyrate linked to COVID-19. Recent advances in biomarker detection and gas sensing with 2D materials, particularly III-As monolayers like BAs, GaAs, and AlAs, offer high sensitivity at low concentrations, providing a novel avenue for exploring their potential in detecting COVID-19 biomarkers. This article aims to examine the effects of adsorption on different properties of III-Arsenide (BAs, GaAs and AlAs) monolayers, particularly in connection with SARS-CoV-2 biomarkers. In order to examine the interaction between the monolayers and biomarkers, first-principles computations within the framework of density functional theory (DFT) are utilized. The present study involves an investigation of the modifications in the band structure, density of states (DOS), work function, electron density difference, and optical properties (reflectance and absorbance) of III-As monolayers, with the aim of assessing their viability for the detection of SARS-CoV-2 biomarkers along with interfering gases such as CO2 and H2O. It is observed that VOCs induce a notable change in the work function of GaAs which serves as an indicator of the presence of these biomarkers. However, the changes in work function are not as substantial as those for AlAs and BAs. Additionally, the chemiresistive sensitivity, optical sensitivity and recovery time of III-As are investigated. The findings suggest that the pristine GaAs monolayer displays a significant level of sensitivity and selectivity towards the SARS-CoV-2 biomarkers, rendering it a material with potential for utilization in sensing applications. Furthermore, it has been observed that the recovery time of the GaAs monolayer subsequent to its exposure to the VOC biomarkers lies within an acceptable threshold. Upon exposure to UV light, the recovery time is further reduced. The outcomes of our study indicate that GaAs monolayers exhibit considerable potential as chemiresistive, work function-based and optical sensors for the precise and discerning identification of VOCs linked to the SARS-CoV-2 virus compared to the other two III-As monolayers.


Assuntos
Arsenicais , COVID-19 , Gálio , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Pandemias , Biomarcadores , Gases
2.
Nanoscale Adv ; 5(11): 2887-2896, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37260479

RESUMO

Thin-film silicon solar cells have sparked a great deal of research interest because of their low material usage and cost-effective processing. Despite the potential benefits, thin-film silicon solar cells have low power-conversion efficiency, which limits their commercial usage and mass production. To solve this problem, we design an ultrathin dual junction tandem solar cell with Cu2ZnSnS4 (CZTS) and crystalline silicon (c-Si) as the main absorbing layer for the top and bottom cells, respectively, through optoelectronic simulation. To enhance light absorption in thin-film crystalline silicon, we use silver nanoparticles at the rear end of the bottom cell. We utilize amorphous Si with a c-Si heterojunction to boost the carrier collection efficiency. Computational analyses show that within 9 µm thin-film c-Si, we achieve 28.28% power conversion efficiency with a 220 nm top CZTS layer. These findings will help reduce the amount of Si (∼10 vs. ∼180 µm) in silicon-based solar cells while maintaining high power conversion efficiency.

3.
RSC Adv ; 13(8): 5307-5316, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36777947

RESUMO

MoSi2N4 is a recently fabricated 2-dimensional indirect bandgap semiconductor material that has attracted interest in various fields due to its promising properties. A defect-based thorough and reliable investigation of its physical properties is indispensable in this regard to explore its industrial applications in the future. In this work, a comprehensive vacancy defect-based analysis of the electronic and mechanical characteristics of this material is conducted with varying defect percentages. We have analyzed the gradual change in electronic properties of MoSi2N4 by performing first-principles density functional theory-based investigation and presented a detailed analysis for point vacancies ranging from 0.297% to 14.29%, revealing the transition of this monolayer from the semiconductor to metal phase. The gradual change in mechanical properties due to the defect introduction has also been reported and analyzed, where the Young's modulus, Poisson ratio, elastic constant, etc. are calculated by the stress-strain method using Matrix Sets (OHESS). Further, we extend the investigation to the exploration of thermal and topological characteristics and report the triviality of the MoSi2N4 material as well as the effect on specific heat, entropy, and free energy with respect to temperature. We believe that the results presented in this study could assist the process of incorporating MoSi2N4 in future 2D electronics.

4.
RSC Adv ; 12(30): 19359-19374, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35865582

RESUMO

We report the design, optimization, and performance analysis of three axial junction nanowire solar cells (NW SCs) based on cadmium telluride (CdTe), copper indium gallium selenide (CIGS), and copper zinc tin sulfide (CZTS) with significant improvement in their optical and electrical characteristics compared to their planar counterparts. It is shown that the performance of these NW SCs can be further improved by incorporating a hemispherical indium doped tin oxide (ITO) forward scatterer on top of the ITO front contact of the solar cells. We also compare forward scatterer incorporated NW SCs with forward scatterer incorporated planar solar cells (PSCs) and observe that forward scatterers significantly enhance the absorption in both cases. We further study the optimum size and arrangement of ITO hemispheres that result in improved photocurrent. In optimum cases, the incorporation of forward scatterers leads to absorption enhancement of 7.8%, 5.36%, and 8.8% in PSCs, and 21.4%, 7.36%, and 6.02% in NW SCs, respectively, for CdTe, CIGS, and CZTS absorbers in the same order. From the absorption profile at various wavelengths, it is found that forward scatterers enhance absorption in the 450-600 nm wavelength range, while nanowires improve absorption in the 600-800 nm range, and their combination results in an improved absorption profile for the entire visible wavelength range. We also observe increased electron-hole-pair (EHP) generation rate due to increased field-scattering and light concentration at the center of the nanowire below forward scattering hemispheres, leading to 46%, 32%, and 82.5% improvement in power conversion efficiency (PCE) for the three absorber layers, respectively. The effects of Al2O3 and SiO2 passivation layers surrounding the nanowires of the optimized cells are observed, and we conclude that the CIGS absorber benefits the most when the SiO2 passivation layer is used, increasing its PCE from 29.72% to 32.43%, while the PCEs of CdTe and CZTS are unaffected by the passivation layer due to competing effects of reduced absorption and reduced surface recombination.

5.
RSC Adv ; 12(26): 16732-16744, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35754891

RESUMO

The design of sensitive and selective gas sensors can be significantly simplified if materials that are intrinsically selective to target gas molecules can be identified. In recent years, monolayers consisting of group III-V elements have been identified as promising gas sensing materials. In this article, we investigate gas adsorption properties of buckled GaAs monolayer using first-principles calculations within the framework of density functional theory. We examine the adsorption energy, adsorption distance, charge transfer, and electron density difference to study the strength and nature of adsorption. We calculate the change in band structure, work function, conductivity, density of states, and optical reflectivity for analyzing its prospect as work function-based, chemiresistive, optical, and magnetic gas sensor applications. In this regard, we considered the adsorption of ten gas molecules, namely NH3, NO2, NO, CH4, H2, CO, SO2, HCN, H2S, and CO2, and noticed that GaAs monolayer is responsive to NO, NO2, NH3, and SO2 only. Specifically, NH3, SO2 and NO2 chemisorb on the GaAs monolayer and change the work function by more than 5%. While both NO and NO2 are found to be responsive in the far-infrared (FIR) range, NO shows better spin-splitting property and a significant change in conductivity. Moreover, the recovery time at room temperature for NO is observed to be in the sub-millisecond range suggesting selective and sensitive NO response in GaAs monolayer.

6.
RSC Adv ; 9(72): 42194-42203, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-35542873

RESUMO

Topologically protected edge states of 2D quantum spin Hall (QSH) insulators have paved the way for dissipationless transport. In this regard, one of the key challenges is to find suitable QSH insulators with large bandgaps. Group IV analogues of graphene such as silicene, germanene, stanene, plumbene etc. are promising materials for QSH insulators. This is because their high spin-orbit coupling (SOC) and large bandgap opening may be possible by chemically decorating these group IV graphene analogues. However, finding suitable chemical groups for such decoration has always been a demanding task. In this work, we investigate the performance of a plumbene monolayer with -CX3 (X = H, F, Cl) chemical decoration and report very large bandgaps in the range of 0.8414 eV to 0.9818 eV with spin-orbit coupling, which is much higher compared to most other topological insulators and realizable at room temperature. The topological invariants of the samples are calculated to confirm their topologically nontrivial properties. The existence of edge states and topological nontrivial property are illustrated by investigating PbCX3 nanoribbons with zigzag edges. Lastly, the structural and electronic stability of the topological materials against strain are demonstrated to extend the scope of using these materials. Our findings suggest that these derivatives are promising materials for spintronic and future high performance nanoelectronic devices.

7.
RSC Adv ; 8(9): 4905-4913, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35539557

RESUMO

We propose a silver (Ag) mixed Cu2ZnSnS4 (ACZTS) based solar cell architecture to improve the efficiency of single junction Cu2ZnSnS4 (CZTS) solar cells. The configuration exploits enhancement of depletion region using a CdS/ACZTS/CZTS architecture. The doping concentration of different layers is adapted such that the primary absorber layer (ACZTS) may become fully depleted and CZTS acts as back surface field layer. We analyze the prospect and performance of the proposed architecture through rigorous optoelectronic simulations. We also study the role of the Schottky barrier at the back-contact interface of a conventional CZTS cell. In this regard, we propose to use an Ohmic contact to increase the open circuit voltage by replacing the molybdenum (Mo) with indium tin oxide (ITO). We further optimize the ACZTS thickness and calculated a maximum obtainable efficiency of 17.59% at 550 nm ACZTS with 940 mV open circuit voltage, 24.65 mA cm-2 short circuit current and 75.94% fill factor including the effects of Shockley-Read-Hall, radiative and surface recombination mechanisms. The efficiency of the optimized cell is ∼6.6% higher than that of the existing best single junction kesterite cell. We also vary the minority carrier life time (τ c) and surface recombination velocity of back contact (SRVback) and report an ideal efficiency of 22.14% with τ c = 1 µs and SRVback = 1000 cm s-1. Finally, we replace the toxic CdS buffer layer with eco-friendly ZnS and observe a relative improvement of 12.91% in the efficiency. The concept proposed and analyses performed in this work advance the efficiency of single junction kesterite solar cells.

8.
Small ; 13(19)2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28371324

RESUMO

Using molecular dynamics simulations, it is shown that a carbon nanotube (CNT) suspended in water and subjected to a rotating electric field of proper magnitude and angular speed can be rotated with the aid of water dipole orientations. Based on this principle, a rotational nanomotor structure is designed and the system is simulated in water. Use of the fast responsiveness of electric-field-induced CNT orientation in water is employed and its operation at ultrahigh-speed (over 1011 r.p.m.) is shown. To explain the basic mechanism, the behavior of the rotational actuation, originated from the water dipole orientation, is also analyzed . The proposed nanomotor is capable of rotating an attached load (such as CNT) at a precise angle as well as nanogear-based complex structures. The findings suggest a potential way of using the electric-field-induced CNT rotation in polarizable fluids as a novel tool to operate nanodevices and systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA