RESUMO
Automatic modulation recognition (AMR) is used in various domains-from general-purpose communication to many military applications-thanks to the growing popularity of the Internet of Things (IoT) and related communication technologies. In this research article, we propose an innovative idea of combining the classical mathematical technique of computing linear combinations (LCs) of cumulants with a genetic algorithm (GA) to create super-cumulants. These super-cumulants are further used to classify five digital modulation schemes on fading channels using the K-nearest neighbor (KNN). Our proposed classifier significantly improves the percentage recognition accuracy at lower SNRs when using smaller sample sizes. A comparison with existing techniques manifests the supremacy of our proposed classifier.
Assuntos
Algoritmos , Análise por Conglomerados , MatemáticaRESUMO
Human cognition is influenced by the way the nervous system processes information and is linked to this mechanical explanation of the human body's cognitive function. Accuracy is the key emphasis in neuroscience which may be enhanced by utilising new hardware, mathematical, statistical, and computational methodologies. Feature extraction and feature selection also play a crucial function in gaining improved accuracy since the proper characteristics can identify brain states efficiently. However, both feature extraction and selection procedures are dependent on mathematical and statistical techniques which implies that mathematical and statistical techniques have a direct or indirect influence on prediction accuracy. The forthcoming challenges of the brain-computer interface necessitate a thorough critical understanding of the complicated structure and uncertain behavior of the brain. It is impossible to upgrade hardware periodically, and thus, an option is necessary to collect maximum information from the brain against varied actions. The mathematical and statistical combination could be the ideal answer for neuroscientists which can be utilised for feature extraction, feature selection, and classification. That is why in this research a statistical technique is offered together with specialised feature extraction and selection methods to increase the accuracy. A score fusion function is changed utilising an enhanced cumulants-driven likelihood ratio test employing multivariate pattern analysis. Functional MRI data were acquired from 12 patients versus a visual test that comprises of pictures from five distinct categories. After cleaning the data, feature extraction and selection were done using mathematical approaches, and lastly, the best match of the projected class was established using the likelihood ratio test. To validate the suggested approach, it is compared with the current methods reported in recent research.