Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Polymers (Basel) ; 16(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732681

RESUMO

Experiments have assessed various polymer composites for radiation shielding in diverse applications. These composites are lighter and non-toxic when compared to lead (Pb), making them particularly effective in diagnostic imaging for shielding against low-energy photons. This study demonstrates the fabrication of four composites by combining a base material, specifically a high-density polyethylene (HDPE) polymer, with 10% and 20% silicon (Si) and silicon carbide (SiC), respectively. Additionally, 5% molybdenum (Mo) was incorporated into the composites as a heavy metal element. The composites obtained were fabricated into 20 disks with a uniform thickness of 2 mm each. Discs were exposed to radiation from a low-energy X-ray source (32.5-64.5 keV). The chemical and physical properties of composites were assessed. The shielding ability of samples was evaluated by determining the linear and mass attenuation coefficients (µ and µm), radiation protection efficiency (RPE), half-value layer (HVL), and mean free path (MFP). According to our findings, supplementing HDPE with additives improved the attenuation of beams. The µm values showed that composite X-ray shielding characteristics were enhanced with filler concentration for both Si and SiC. Polymer composites with micro-molecule fillers shelter X-rays better than polymers, especially at low energy. The HVL and MFB values of the filler are lower than those of the pure HDPE sample, indicating that less thickness is needed to shield at the appropriate energy. HC-20 blocked 92% of the incident beam at 32.5 keV. This study found that increasing the composite sample thickness or polymer filler percentage could shield against low-energy radiation.

2.
Polymers (Basel) ; 16(10)2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38794608

RESUMO

The objective of the research is to develop novel materials that are both inexpensive and have a low density, while also being able to endure the transportation of γ-photons with low-to-medium energy levels. The outcome consisted of four epoxy resins that were strengthened with different quantities of heavy metallic waste. The density of the formed composites improved from 1.134 ± 0.022 g/cm3 to 1.560 ± 0.0312 g/cm3 when the waste content was raised from 0 to 40 weight percent. The theoretical investigation was determined using Monte Carlo (MCNP) simulation software, and the results of linear attenuation coefficient were justified experimentally in a low and medium energy range of 15-662 keV. The mass attenuation coefficient results in a low gamma energy range (15-122 keV) varied in between 3.175 and 0.159 cm2/g (for E-MW0 composite) and in between 8.212 and 0.164 cm2/g (for E-MW40 composite). The decrease in mass attenuation coefficient was detected in a medium gamma photon energy range (122-662 keV) with 0.123-0.082 cm2/g (for E-MW0 composite) and 0.121-0.080 cm2/g (for E-MW40 composite). The density of the enhanced composites influenced these parameters. As the metallic waste composition increased, the fabricated composites' half-value thickness decreased. At 15 keV, the half-value thickness decreased from 0.19 to 0.05 cm. At 59 keV, it fell from 2.70 to 1.41 cm. At 122 keV, it fell from 3.90 to 2.72 cm. At 662 keV, it fell from 7.45 to 5.56 cm. This decrease occurred as the heavy metal waste concentration increased from 0 to 40 wt.%. The study indicates that as metallic waste concentrations rise, there is a rise in the effective atomic number and a decline in the buildup factors.

3.
BJR Open ; 5(1): 20220035, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37389000

RESUMO

Objectives: It is essential to study the dosimetric performance and reliability of personal dosimeters. This study examines and compares the responses of two commercial thermoluminescence dosimeters (TLDs), the TLD-100 and the MTS-N. Methods: We compared the two TLDs to various parameters such as energy dependence, linearity, homogeneity, reproducibility, light sensitivity (zero point), angular dependence, and temperature effects using the IEC 61066 standard. Results: The results acquired showed that both TLD materials show linear behavior as indicated by the quality of the fit. In addition, the angular dependence results for both detectors show that all dose responses are within the range of acceptable values. However, the TLD-100 outperformed the MTS-N in terms of light sensitivity reproducibility for all detectors together, while the MTS-N outperforms the TLD-100 for each detector independently and that showed TLD-100 has more stability than MTS-N. The MTS-N shows better batch homogeneity (10.84%) than TLD-100 (13.65%). The effect of temperature in signal loss was clearer at higher temperature 65°C and it was however below ±30%. Conclusions: The overall results for dosimetric properties determined in terms of dose equivalents for all combinations of detectors are satisfactory. The MTS-N cards have better results in the energy dependence, angular dependency, batch homogeneity and less signal fading, whereas the TLD-100 cards are less sensitive to light and more reproducible. Advances in knowledge: Although previous studies showed several types of comparisons between TLDs, they have used limited parameters and different data analysis. This study has dealt with more comprehensive characterization methods and examinations combining TLD-100 and MTS-N cards.

4.
RSC Adv ; 13(4): 2663-2671, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741170

RESUMO

Blue emitting nitrogen-doped carbon dots were synthesized using citric acid and urea through the hydrothermal method, and the fluorescence quantum yield was 35.08%. We discovered that N-CDs featured excellent robust fluorescence stability and chemical resistance. For metronidazole detection, our N-CDs exhibited quick response time, high selectivity and sensitivity, and low cytotoxicity. Specifically, our N-CDs could detect metronidazole in the linear range of 0-179 µM, and the LOD was 0.25 µM. Furthermore, metronidazole efficaciously quenches the fluorescence of N-CDs, possibly owing to the inner filter effect. Lastly, we have employed our N-CDs to detect metronidazole in commercial metronidazole tablets with high accuracy. Overall, the newly prepared fluorescence sensor, N-CDs, demonstrated a huge potential to detect metronidazole in a simple, efficient, sensitive, and rapid manner.

5.
IET Nanobiotechnol ; 17(1): 22-31, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36420828

RESUMO

Hyperthermia is an additional treatment method to radiation therapy/chemotherapy, which increases the survival rate of patients without side effects. Nowadays, Auroshell nanoparticles have attracted much attention due to their precise control over heat use for medical purposes. In this research, iron/gold Auroshell nanoparticles were synthesised using green nanotechnology approach. Auroshell gold@hematite nanoparticles were synthesised and characterised with rosemary extract in one step and the green synthesised nanoparticles were characterised by X-ray powder diffraction, SEM, high-resolution transmission electron microscopy, and X-ray photoelectron spectroscopy analysis. Cytotoxicity of Auroshell iron@gold nanoparticles against normal HUVEC cells and glioblastoma cancer cells was evaluated by 2,5-diphenyl-2H-tetrazolium bromide method, water bath hyperthermia, and combined method of water bath hyperthermia and nano-therapy. Auroshell gold@hematite nanoparticles with minimal toxicity are safe against normal cells. The gold shell around the magnetic core of magnetite caused the environmental and cellular biocompatibility of these Auroshell nanoparticles. These magnetic nanoparticles with targeted control and transfer to the tumour tissue led to uniform heating of malignant tumours as the most efficient therapeutic agent.


Assuntos
Hipertermia Induzida , Nanopartículas de Magnetita , Oligoelementos , Humanos , Ouro/química , Nanopartículas de Magnetita/uso terapêutico , Nanopartículas de Magnetita/química , Hipertermia Induzida/métodos , Ferro , Água
6.
Life (Basel) ; 12(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35054424

RESUMO

This paper presents guidelines for the calibration of radiation beams that were issued by the International Atomic Energy Agency (IAEA TRS 398), the American Association of Physicists in Medicine (AAPM TG 51) and the German task group (DIN 6800-2). These protocols are based on the use of an ionization chamber calibrated in terms of absorbed dose to water in a standard laboratory's reference quality beam, where the previous protocols were based on air kerma standards. This study aims to determine uncertainties in dosimetry for electron beam radiotherapy using internationally established high-energy radiotherapy beam calibration standards. Methods: Dw was determined in 6-, 12- and 18 MeV electron energies under reference conditions using three cylindrical and two plane-parallel ion chambers in concert with the IAEA TRS 398, AAPM TG 51 and DIN 6800-2 absorbed dose protocols. From mean measured Dw values, the ratio TRS 398/TG 51 was found to vary between 0.988 and 1.004, while for the counterpart TRS 398/DIN 6800-2 and TG 51/DIN 6800-2, the variation ranges were 0.991-1.003 and 0.997-1.005, respectively. For the cylindrical chambers, the relative combined uncertainty (k = 1) in absorbed dose measurements was 1.44%, while for the plane-parallel chambers, it ranged from 1.53 to 1.88%. Conclusions: A high degree of consistency was demonstrated among the three protocols. It is suggested that in the use of the presently determined dose conversion factors across the three protocols, dose intercomparisons can be facilitated between radiotherapy centres.

7.
Curr Med Imaging ; 17(2): 296-305, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33045969

RESUMO

INTRODUCTION: The purpose of the present work was to evaluate the imaging characteristics of 89Zr-PET in comparison with those obtained using fluorine-18 Fluorodeoxyglucose (18FFDG) PET (a gold standard tracer in PET imaging) using a small-animal NanoScan PET/CT scanner. METHODS: The system's spatial resolution, sensitivity, uniformity, and image quality were measured on a Nano Scan small-animal PET/CT scanner according to the NEMA NU4-2008 protocols. For reconstruction images, we used 2D and 3D reconstruction algorithms. The reconstruction methods included filter back projection (FBP), the ordered subsets expectation maximization (OSEM) algorithm, and the 3D Tera-Tomo algorithm, which are developed for the NanoScan small-animal PET/CT scanner. RESULTS: The results obtained showed a significant difference in the spatial resolution for 89Zr as compared to 22Na and 18F when using a 2D reconstruction algorithm. The spatial resolution values were much enhanced by using the 3D Tera-Tomo reconstruction for each isotope, the Full width at half maximum (FWHM) values was less than 1 for all isotopes at the center of the field of view (FOV). This difference in spatial resolution is dependent on the positron range, energy, and the reconstruction method. CONCLUSION: The long half-life of 89Zr makes it an ideal positron emitter for performing immuno- PET, which is matched with the biological half-life of intact mAbs.89Zr can also give several advantages over other long half-life positron emitters in relation to the overall imaging performance because of its relatively short positron range and simpler decay scheme. The values of 89Zr sensitivity that were obtained in the present study were less than those of previous studies.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Animais , Fluordesoxiglucose F18 , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons
8.
Nucl Med Commun ; 37(12): 1238-1245, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27749774

RESUMO

PURPOSE: Interest in PET imaging using zirconium-89 (Zr) (t1/2=78.41 h)-labeled tracers for the tracking and quantification of monoclonal antibodies (mAbs) is growing, mainly because of its well-matched physical half-life with the biological half-life of intact mAbs. This study aims to evaluate the imaging characteristics of Zr-PET in comparison with those obtained using fluorine-18 fluorodeoxyglucose (F-FDG) PET (gold standard tracer in PET imaging) using a Time-Of-Flight (TOF) PET/computed tomography (CT) scanner. MATERIALS AND METHODS: The system's spatial resolution, sensitivity, scatter fraction (SF), image uniformity, and image quality were measured on a Gemini TOF PET/CT scanner according to the NEMA NU2-2001 protocols. The NEMA 2001 kit was used to carry out these measurements. Timing and energy resolutions were measured using Na and F-FDG point sources only. RESULTS: Spatial resolution in transverse and axial planes measured at 10 mm off access were 4.7 and 4.6 mm for Zr and F-FDG, respectively. At 100 mm, radial, tangential, and axial spatial resolution values were 5.2, 5.1, and 5.2 mm for Zr and 5.1, 4.9, and 5.2 mm for F-FDG, respectively. Sensitivity measured at the center of the field of view was 14.6 and 4.16 cps/kBq for Zr and F-FDG, respectively. SF was 32.6% for Zr in comparison with 31.8% for F-FDG. Image contrast for Zr-PET images was 36.9 and 29.7% for F-FDG for the smallest (10 mm)-sized sphere, and it was 70.6 and 72.8% for Zr and F-FDG, respectively, for the largest (37 mm)-sized sphere. Background variation was 10.3% for Zr and 6.8% for F-FDG for the smallest-sized sphere and 3.4 and 3.8% for Zr and F-FDG, respectively, for the largest-sized sphere. CONCLUSION: In this study, we measured imaging characteristics of Zr on a Gemini TOF PET/CT scanner. Our results show that Zr has lower spatial resolution and noise-equivalent count rate with increased SF and background variation; however, it offered superior sensitivity and improved image contrast in comparison with F-FDG. Zr is an ideal radiotracer for immuno-PET imaging because of its physical half-life, which is well matched with mAbs, in addition to its affinity to be trapped inside the target cell after internalization of the mAbs.


Assuntos
Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Radioisótopos , Zircônio , Anticorpos Monoclonais/farmacocinética , Radioisótopos de Flúor , Fluordesoxiglucose F18 , Meia-Vida , Humanos , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/estatística & dados numéricos , Compostos Radiofarmacêuticos , Espalhamento de Radiação , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA