RESUMO
The development of new pharmaceutical solutions for treating various diseases results from a growing understanding of the benefits of using essential oils. One of the most often used volatile materials among essential oils is the oil of the citronella plant, termed citronella essential oil (CITEO), which has potential for use in food and medicine. Its wide use is limited due to lipophilicity, high volatility and poor physicochemical stability. With this background, the present study aims to evaluate the properties of CITEO-nanoemulsion (CITEO-NE) by analyzing its antimicrobial activities against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) and its anticancer activity against, human skin adenocarcinoma cell line (A431). The CITEO-NE was prepared and evaluated for the size range of 130 ± 5 nm, polydispersity index (PDI) of 0.127 and zeta potential -12.6 mV. The percentage % of entrapment efficiency (%EE) of nanoemulsions loaded with CIT was very high at the beginning of the study, at 95.5 ± 4.775%. The MIC was observed to be 500 µg/mL for CITEO and 250 µg/mL for CITEO-NE against S. aureus and 250 µg/mL for CITEO and 125 µg/mL for CITEO-NE against C. albicans. The time-kill assay also suggests the effectiveness of CITEO-NE against the test pathogens as a novel alternative therapy. The IC50 values of CITEO and CITEO-NE exhibited significant cytotoxic properties against the A431 cell line, with 41.20 µg/mL and 37.71 µg/mL, respectively. Hence, our findings revealed that encapsulation of CITEO increased the pharmacological properties.
RESUMO
A sensitive and selective molecular imprinted polymeric network (MIP) electrochemical sensor is proposed for the determination of anti-cancer drug oxaliplatin (OXAL). The polymeric network [poly(pyrrole)] was electrodeposited on a glassy carbon electrode (GCE) modified with silver nanoparticles (Ag) functionalized Cu-metal organic framework (Cu-BDC) and nitrogen-doped carbon nanotubes (N-CNTs). The MIP-Ag@Cu-BDC /N-CNTs/GCE showed an observable reduction peak at -0.14 V, which corresponds to the Cu-BDC reduction. This peak increased and decreased by eluting and rebinding of OXAL, respectively. The binding constant between OXAL and Cu-BDC was calculated to be 3.5 ± 0.1 × 107 mol-1 L. The electrochemical signal (∆i) increased with increasing OXAL concentration in the range 0.056-200 ng mL-1 with a limit of detection (LOD, S/N = 3) of 0.016 ng mL-1. The combination of N-CNTs and Ag@Cu-BDC improves both the conductivity and the anchoring sites for binding the polymer film on the surface of the electrode. The MIP-based electrochemical sensor offered outstanding sensitivity, selectivity, reproducibility, and stability. The MIP-Ag@Cu-BDC /N-CNTs/GCE was applied to determine OXAL in pharmaceutical injections, human plasma, and urine samples with good recoveries (97.5-105%) and acceptable relative standard deviations (RSDs = 1.8-3.2%). Factors affecting fabrication of MIP and OXAL determination were optimized using standard orthogonal design using L25 (56) matrix. This MIP based electrochemical sensor opens a new venue for the fabrication of other similar sensors and biosensors.