Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 71(1): 5-16, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37743549

RESUMO

Suicide gene therapy involves introducing viral or bacterial genes into tumor cells, which enables the conversion of a nontoxic prodrug into a toxic-lethal drug. The application of the bacterial cytosine deaminase (bCD)/5-fluorocytosine (5-FC) approach has been beneficial and progressive within the current field of cancer therapy because of the enhanced bystander effect. The basis of this method is the preferential deamination of 5-FC to 5-fluorouracil by cancer cells expressing cytosine deaminase (CD), which strongly inhibits DNA synthesis and RNA function, effectively targeting tumor cells. However, the poor binding affinity of toward 5-FC compared to the natural substrate cytosine and/or inappropriate thermostability limits the clinical applications of this gene therapy approach. Nowadays, many genetic engineering studies have been carried out to solve and improve the activity of this enzyme. In the current review, we intend to discuss the biotechnological aspects of Escherichia coli CD, including its structure, functions, molecular cloning, and protein engineering. We will also explore its relevance in cancer clinical trials. By examining these aspects, we hope to provide a thorough understanding of E. coli CD and its potential applications in cancer therapy.


Assuntos
Citosina Desaminase , Pró-Fármacos , Humanos , Citosina Desaminase/genética , Citosina Desaminase/metabolismo , Escherichia coli/metabolismo , Fluoruracila/química , Flucitosina/farmacologia , Flucitosina/metabolismo , Terapia Genética , Pró-Fármacos/metabolismo
2.
Front Genet ; 14: 1225196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705610

RESUMO

Background: Alzheimer's Disease (AD) is an age-related progressive neurodegenerative disorder characterized by mental deterioration, memory deficit, and multiple cognitive abnormalities, with an overall prevalence of ∼2% among industrialized countries. Although a proper diagnosis is not yet available, identification of miRNAs and mRNAs could offer valuable insights into the molecular pathways underlying AD's prognosis. Method: This study aims to utilize microarray bioinformatic analysis to identify potential biomarkers of AD, by analyzing six microarray datasets (GSE4757, GSE5281, GSE16759, GSE28146, GSE12685, and GSE1297) of AD patients, and control groups. Furthermore, this study conducted gene ontology, pathways analysis, and protein-protein interaction network to reveal major pathways linked to probable biological events. The datasets were meta-analyzed using bioinformatics tools, to identify significant differentially expressed genes (DEGs) and hub genes and their targeted miRNAs'. Results: According to the findings, CXCR4, TGFB1, ITGB1, MYH11, and SELE genes were identified as hub genes in this study. The analysis of DEGs using GO (gene ontology) revealed that these genes were significantly enriched in actin cytoskeleton regulation, ECM-receptor interaction, and hypertrophic cardiomyopathy. Eventually, hsa-mir-122-5p, hsa-mir-106a-5p, hsa-mir-27a-3p, hsa-mir16-5p, hsa-mir-145-5p, hsa-mir-12-5p, hsa-mir-128-3p, hsa-mir 3200-3p, hsa-mir-103a-3p, and hsa-mir-9-3p exhibited significant interactions with most of the hub genes. Conclusion: Overall, these genes can be considered as pivotal biomarkers for diagnosing the pathogenesis and molecular functions of AD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA