Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Environ Res ; : 119179, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38768882

RESUMO

Exposure to particulate matter (PM) pollution is a significant health risk, driving the search for innovative metrics that more accurately reflect the potential harm to human health. Among these, oxidative potential (OP) has emerged as a promising health-based metric, yet its application and relevance across different environments remain to be further explored. This study, set in two high-altitude Bolivian cities, aims to identify the most significant sources of PM-induced oxidation in the lungs and assess the utility of OP in assessing PM health impacts. Utilizing two distinct assays, OPDTT and OPDCFH, we measured the OP of PM samples, while also examining the associations between PM mass, OP, and black carbon (BC) concentrations with hospital visits for acute respiratory infections (ARI) and pneumonia over a range of exposure lags (0-2 weeks) using a Poisson regression model adjusted for meteorological conditions. The analysis also leveraged Positive Matrix Factorization (PMF) to link these health outcomes to specific PM sources, building on a prior source apportionment study utilizing the same dataset. Our findings highlight anthropogenic combustion, particularly from traffic and biomass burning, as the primary contributors to OP in these urban sites. Significant correlations were observed between both OPDTT and PM2.5 concentration exposure and ARI hospital visits, alongside a notable association with pneumonia cases and OPDTT levels. Furthermore, PMF analysis demonstrated a clear link between traffic-related pollution and increased hospital admissions for respiratory issues, affirming the health impact of these sources. These results underscore the potential of OPDTT as a valuable metric for assessing the health risks associated with acute PM exposure, showcasing its broader application in environmental health studies.

2.
Sci Total Environ ; 922: 171307, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38428593

RESUMO

Desert dust is currently recognized as a health risk factor. Therefore, the World Health Organization (WHO) is actively promoting the establishment of early warning systems for sand and dust storms. This study introduces a methodology to estimate the probability of African dust outbreaks occurring in eight different regions of the Iberian Peninsula and the Balearic Islands. In each region, a multilinear regression model was developed to calculate daily probabilities of dust events using three thermodynamic variables (geopotential thickness in the 1000-500 hPa layer, mean potential temperature between 925 and 700 hPa, and temperature anomalies at 850 hPa) as assessment parameters. All days with African dust transport over each study region were identified in the period 2001-2021 using a proven procedure. This information was then utilized to establish a functional relationship between the values of the thermodynamic parameters and the probability of African dust outbreaks occurring. The validation of this methodology involved comparing the daily probabilities of dust events generated by the models in 2001-2021 with the daily African dust contributions to PM10 regional background levels in each region. On average, daily dust contributions increased proportionally with the increase in daily probabilities, reaching zero for days with low probabilities. Furthermore, a well-defined seasonal evolution of probability values was observed in all regions, with the highest values in the summer months and the lowest in the winter period, ensuring the physical relevance of the models' results. Finally, upward trends were observed in all regions for the three thermodynamic parameters over 1940-2021. Thus, the probability of dust events development also increased in this period. It demonstrates that the aggravation of warm conditions in southern Europe in the last decades, have modified the frequency of North-African dust outbreaks over the western Mediterranean basin.

3.
Environ Int ; 185: 108519, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38428189

RESUMO

This study addressed the scarcity of NH3 measurements in urban Europe and the diverse monitoring protocols, hindering direct data comparison. Sixty-nine datasets from Finland, France, Italy, Spain, and the UK across various site types, including industrial (IND, 8), traffic (TR, 12), urban (UB, 22), suburban (SUB, 12), and regional background (RB, 15), are analyzed to this study. Among these, 26 sites provided 5, or more, years of data for time series analysis. Despite varied protocols, necessitating future harmonization, the average NH3 concentration across sites reached 8.0 ± 8.9 µg/m3. Excluding farming/agricultural hotspots (FAHs), IND and TR sites had the highest concentrations (4.7 ± 3.2 and 4.5 ± 1.0 µg/m3), followed by UB, SUB, and RB sites (3.3 ± 1.5, 2.7 ± 1.3, and 1.0 ± 0.3 µg/m3, respectively) indicating that industrial, traffic, and other urban sources were primary contributors to NH3 outside FAH regions. When referring exclusively to the FAHs, concentrations ranged from 10.0 ± 2.3 to 15.6 ± 17.2 µg/m3, with the highest concentrations being reached in RB sites close to the farming and agricultural sources, and that, on average for FAHs there is a decreasing NH3 concentration gradient towards the city. Time trends showed that over half of the sites (18/26) observed statistically significant trends. Approximately 50 % of UB and TR sites showed a decreasing trend, while 30 % an increasing one. Meta-analysis revealed a small insignificant decreasing trend for non-FAH RB sites. In FAHs, there was a significant upward trend at a rate of 3.51[0.45,6.57]%/yr. Seasonal patterns of NH3 concentrations varied, with urban areas experiencing fluctuations influenced by surrounding emissions, particularly in FAHs. Diel variation showed differing patterns at urban monitoring sites, all with higher daytime concentrations, but with variations in peak times depending on major emission sources and meteorological patterns. These results offer valuable insights into the spatio-temporal patterns of gas-phase NH3 concentrations in urban Europe, contributing to future efforts in benchmarking NH3 pollution control in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Amônia/análise , Poluição do Ar/análise , Espanha , Finlândia , Europa (Continente) , França , Itália , Monitoramento Ambiental/métodos , Reino Unido
4.
Environ Int ; 185: 108553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460240

RESUMO

A reliable determination of equivalent black carbon (eBC) mass concentrations derived from filter absorption photometers (FAPs) measurements depends on the appropriate quantification of the mass absorption cross-section (MAC) for converting the absorption coefficient (babs) to eBC. This study investigates the spatial-temporal variability of the MAC obtained from simultaneous elemental carbon (EC) and babs measurements performed at 22 sites. We compared different methodologies for retrieving eBC integrating different options for calculating MAC including: locally derived, median value calculated from 22 sites, and site-specific rolling MAC. The eBC concentrations that underwent correction using these methods were identified as LeBC (local MAC), MeBC (median MAC), and ReBC (Rolling MAC) respectively. Pronounced differences (up to more than 50 %) were observed between eBC as directly provided by FAPs (NeBC; Nominal instrumental MAC) and ReBC due to the differences observed between the experimental and nominal MAC values. The median MAC was 7.8 ± 3.4 m2 g-1 from 12 aethalometers at 880 nm, and 10.6 ± 4.7 m2 g-1 from 10 MAAPs at 637 nm. The experimental MAC showed significant site and seasonal dependencies, with heterogeneous patterns between summer and winter in different regions. In addition, long-term trend analysis revealed statistically significant (s.s.) decreasing trends in EC. Interestingly, we showed that the corresponding corrected eBC trends are not independent of the way eBC is calculated due to the variability of MAC. NeBC and EC decreasing trends were consistent at sites with no significant trend in experimental MAC. Conversely, where MAC showed s.s. trend, the NeBC and EC trends were not consistent while ReBC concentration followed the same pattern as EC. These results underscore the importance of accounting for MAC variations when deriving eBC measurements from FAPs and emphasize the necessity of incorporating EC observations to constrain the uncertainty associated with eBC.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
5.
Environ Int ; 185: 108510, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38460241

RESUMO

Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5-11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25-100 nm) and the Accumulation (100-800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Cidades , Monitoramento Ambiental/métodos , Europa (Continente) , Tamanho da Partícula , Material Particulado/análise , Emissões de Veículos/análise
7.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323876

RESUMO

Risk assessment of pesticide impacts on remote ecosystems makes use of model-estimated degradation in air. Recent studies suggest these degradation rates to be overestimated, questioning current pesticide regulation. Here, we investigated the concentrations of 76 pesticides in Europe at 29 rural, coastal, mountain, and polar sites during the agricultural application season. Overall, 58 pesticides were observed in the European atmosphere. Low spatial variation of 7 pesticides suggests continental-scale atmospheric dispersal. Based on concentrations in free tropospheric air and at Arctic sites, 22 pesticides were identified to be prone to long-range atmospheric transport, which included 15 substances approved for agricultural use in Europe and 7 banned ones. Comparison between concentrations at remote sites and those found at pesticide source areas suggests long atmospheric lifetimes of atrazine, cyprodinil, spiroxamine, tebuconazole, terbuthylazine, and thiacloprid. In general, our findings suggest that atmospheric transport and persistence of pesticides have been underestimated and that their risk assessment needs to be improved.

8.
Environ Int ; 184: 108449, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38286044

RESUMO

Black carbon (BC) has received increasing attention from researchers due to its adverse health effects. However, in-situ BC measurements are often not included as a regulated variable in air quality monitoring networks. Machine learning (ML) models have been studied extensively to serve as virtual sensors to complement the reference instruments. This study evaluates and compares three white-box (WB) and four black-box (BB) ML models to estimate BC concentrations, with the focus to show their transferability and interpretability. We train the models with the long-term air pollutant and weather measurements in Barcelona urban background site, and test them in other European urban and traffic sites. Despite the difference in geographical locations and measurement sites, BC correlates the strongest with particle number concentration of accumulation mode (PNacc, r = 0.73-0.85) and nitrogen dioxide (NO2, r = 0.68-0.85) and the weakest with meteorological parameters. Due to its similarity of correlation behaviour, the ML models trained in Barcelona performs prominently at the traffic site in Helsinki (R2 = 0.80-0.86; mean absolute error MAE = 3.90-4.73 %) and at the urban background site in Dresden (R2 = 0.79-0.84; MAE = 4.23-4.82 %). WB models appear to explain less variability of BC than BB models, long short-term memory (LSTM) model of which outperforms the rest of the models. In terms of interpretability, we adopt several methods for individual model to quantify and normalize the relative importance of each input feature. The overall static relative importance commonly used for WB models demonstrate varying results from the dynamic values utilized to show local contribution used for BB models. PNacc and NO2 on average have the strongest absolute static contribution; however, they simultaneously impact the estimation positively and negatively at different sites. This comprehensive analysis demonstrates that the possibility of these interpretable air pollutant ML models to be transfered across space and time.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Monitoramento Ambiental/métodos , Dióxido de Nitrogênio/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Fuligem/análise , Aprendizado de Máquina , Carbono/análise , Material Particulado/análise
9.
Environ Int ; 183: 108252, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38157608

RESUMO

Understanding the atmospheric processes involving carbonaceous aerosols (CAs) is crucial for assessing air pollution impacts on human health and climate. The sources and formation mechanisms of CAs are not well understood, making it challenging to quantify impacts in models. Studies suggest residential wood combustion (RWC) and traffic significantly contribute to CAs in Europe's urban and rural areas. Here, we used an atmospheric chemistry model (MONARCH) and three different emission inventories (two versions of the European-scale emission inventory CAMS-REG_v4 and the HERMESv3 detailed national inventory for Spain) to assess the uncertainties in CAs simulation and source allocation (from traffic, RWC, shipping, fires and others) in Northeast Spain. For this, black carbon (BC) and organic aerosol (OA) measurements performed at three supersites representing different environments (urban, regional and remote) were used. Our findings show the importance of model resolution and detailed emission input data in accurately reproducing BC/OA observations. Even though emissions of total particulate matter are rather consistent between inventories in Spain, we found discrepancies between them mainly related to the spatiotemporal disaggregation (particularly relevant for traffic and RWC) and the treatment of the condensable fraction of CAs in RWC (changes in the speciation of elemental/organic carbon). The main source contribution to BC concentrations in the urban site is traffic, accounting for 71.1%/65.2% (January/July) in close agreement with the fossil contribution derived from observations (78.8%/84.2%), followed by RWC (12.8%/3%) and shipping emissions (5.4%/13.8%). An over-representation of RWC (winter) and shipping (summer) is obtained with CAMS-REG_v4. Noteworthy uncertainties arise in OA results due to condensables in emissions and a limited secondary aerosol production in the model. These findings offer insights into MONARCH's effectiveness in simulating CAs concentrations and source contribution in Northeast Spain. The study highlights the benefits of combining new datasets and modeling techniques to refine emission inventories and better understand and mitigate air pollution impacts.


Assuntos
Poluentes Atmosféricos , Humanos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Carbono/análise , Aerossóis/análise , Região do Mediterrâneo
10.
Sci Total Environ ; 902: 166440, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611714

RESUMO

Organic aerosols (OA) have recently been shown to be the dominant contributor to the oxidative potential of airborne particulate matter in northeastern Spain. We collected PM10 filter samples every fourth day from January 2017 to March 2018 at two sampling stations located in Barcelona city and Montseny Natural Park, representing urban and rural areas, respectively. The chemical composition of PM10 was analyzed offline using a broad set of analytical instruments, including high-resolution time-of-flight mass spectrometry (HR-ToF-AMS), a total organic carbon analyzer (TCA), inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS), ion chromatography (IC), and thermal-optical carbon analyzer. Source apportionment analysis of the water-soluble organic content of the samples measured via HR-ToF-AMS revealed two primary and two secondary sources of OA, which included biomass-burning OA (BBOA), sulfur-containing OA (SCOA), as well as summer- and winter­oxygenated OA (SOOA and WOOA). The presence of hydrocarbon-like water-insoluble OA was also identified based on concentration trends in black carbon and nitrogen oxides. The results from the source apportionment analysis of the inorganic composition were correlated with different OA factors to assess potential source contributors. Barcelona showed significantly higher average water-soluble OA concentrations (5.63 ± 0.56 µg m-3) than Montseny (3.27 ± 0.37 µg m-3) over the sampling period. WOOA accounted for nearly 27 % of the averaged OA in Barcelona compared to only 7 % in Montseny. In contrast, SOOA had a greater contribution to OA in Montseny (47 %) than in Barcelona (24 %). SCOA and BBOA were responsible for 15-28 % of the OA at both sites. There were also seasonal variations in the relative contributions of different OA sources. Our overall results showed that local anthropogenic sources were primarily responsible for up to 70 % of ambient soluble OA in Barcelona, and regulating local-scale emissions could significantly improve air quality in urban Spain.

11.
Chemosphere ; 341: 139959, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37640211

RESUMO

In highly industrialized areas, abating particulate matter (PM) is complex owing to the variety of emission sources with different chemical profiles that may mix in the atmosphere. Gijón-an industrial city in northern Spain-was selected as a case study to better understand the key emission sources and improve air quality in highly industrialized areas. Accordingly, the trends of various air quality indicators (PM10, PM2.5, SO2, NO2, and O3) during the past decade (2010-2019) were analyzed. Additionally, the inorganic and organic PM10 compositions were analyzed for source apportionment studies and to assess the impact of COVID-19 restrictions on PM10 levels. The results revealed that over the past decade, PM10 concentrations decreased, whereas PM2.5 concentrations dominated by secondary inorganic aerosols (SIA) remained relatively constant. Notably, during the COVID-19 lockdown, the PM10 concentration increased by 9.1%, primarily owing to an increase in regional SIA (>65%) due to specific meteorological conditions that favor the formation of secondary PM from gaseous precursors. Overall, eight key PM10 sources were identified: "industrial fugitive PM resuspension" (FPM, 28% of mean PM10 concentration), "aged sea spray" (SSp, 16%), "secondary nitrate" (SN, 15%), "local diffuse source" (LPM, 12%), "solid fuel combustion" (SFC, 7.8%), "biomass burning" (BB, 7.4%), "secondary sulphate" (SSu, 6.0%), and "sinter" (SIN, 4.5%). The PM10 concentration in Gijón is significantly influenced by the integrated steel industry (FPM, SFC, and SIN; 41% of PM10) and fugitive primary PM emissions were the main source (FPM and LPM; 40%). To reduce PM10 and PM2.5 concentrations, industrial fugitive emissions, which are currently poorly regulated, and SIA precursors must be abated. This study provides a methodological approach that combines trend analysis, chemical speciation, and source apportionment for assessing pollution abatement strategies in industrialized areas with a complex mix of emission sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Humanos , Idoso , Material Particulado/análise , Poluentes Atmosféricos/análise , Espanha , Monitoramento Ambiental/métodos , Controle de Doenças Transmissíveis , Aerossóis e Gotículas Respiratórios , Poluição do Ar/análise , Emissões de Veículos/análise
12.
Sci Total Environ ; 902: 165380, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429468

RESUMO

Tropospheric ozone (O3) is a secondary air pollutant that affects human health, vegetation and climate, especially in Mediterranean countries such as Spain. In order to tackle this long-standing issue, the Spanish government recently started to design the Spanish O3 Mitigation Plan. To support this initiative and ultimately provide recommendations, we performed a first ambitious emission and air quality modeling exercise. This study presents the development of different emission scenarios - aligned with or beyond the measures planned for 2030 in Spain - and the modeling of their respective impact on the O3 pollution across Spain (in July 2019) with both MONARCH and WRF-CMAQ air quality models. The modeling experiments include a base case scenario, a so-called planned emission (PE) scenario integrating the expected emission changes related to 2030, and a set of specific emission scenarios in which additional emission changes are applied to specific sectors (on e.g., road transport, maritime traffic) on top of the PE scenario. The planned emission scenario considerably reduces daily 8-h maximum O3 concentrations (-4 µg/m3 on average), with strongest reductions in Madrid region, north of Catalonia, Valencia region, Galicia and Andalusia. The frequency of observed daily exceedances of the 120 µg/m3 daily 8-h maximum target value and 180 µg/m3 hourly information threshold could be reduced by -37 and -77 %, respectively. The results of the specific scenarios highlight road transport and maritime traffic as two key emission sectors contributing to O3 pollution, over the entire country and the Mediterranean coast, respectively, while solvent use and industry emissions have a more limited and localized impact on O3. In any case, even with the implementation of all the emission scenarios, daily exceedances of the aforementioned thresholds will still be recorded over the country.

13.
Environ Int ; 178: 108081, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37451041

RESUMO

This study analyzed the variability of equivalent black carbon (eBC) mass concentrations and their sources in urban Europe to provide insights into the use of eBC as an advanced air quality (AQ) parameter for AQ standards. This study compiled eBC mass concentration datasets covering the period between 2006 and 2022 from 50 measurement stations, including 23 urban background (UB), 18 traffic (TR), 7 suburban (SUB), and 2 regional background (RB) sites. The results highlighted the need for the harmonization of eBC measurements to allow for direct comparisons between eBC mass concentrations measured across urban Europe. The eBC mass concentrations exhibited a decreasing trend as follows: TR > UB > SUB > RB. Furthermore, a clear decreasing trend in eBC concentrations was observed in the UB sites moving from Southern to Northern Europe. The eBC mass concentrations exhibited significant spatiotemporal heterogeneity, including marked differences in eBC mass concentration and variable contributions of pollution sources to bulk eBC between different cities. Seasonal patterns in eBC concentrations were also evident, with higher winter concentrations observed in a large proportion of cities, especially at UB and SUB sites. The contribution of eBC from fossil fuel combustion, mostly traffic (eBCT) was higher than that of residential and commercial sources (eBCRC) in all European sites studied. Nevertheless, eBCRC still had a substantial contribution to total eBC mass concentrations at a majority of the sites. eBC trend analysis revealed decreasing trends for eBCT over the last decade, while eBCRC remained relatively constant or even increased slightly in some cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Aerossóis/análise , Poluição do Ar/análise , Europa (Continente) , Estações do Ano , Fuligem/análise , Carbono/análise , Material Particulado/análise
14.
Environ Int ; 177: 108006, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37285710

RESUMO

Source apportionment (SA) techniques allocate the measured ambient pollutants with their potential source origin; thus, they are a powerful tool for designing air pollution mitigation strategies. Positive Matrix Factorization (PMF) is one of the most widely used SA approaches, and its multi-time resolution (MTR) methodology, which enables mixing different instrument data in their original time resolution, was the focus of this study. One year of co-located measurements in Barcelona, Spain, of non-refractory submicronic particulate matter (NR-PM1), black carbon (BC) and metals were obtained by a Q-ACSM (Aerodyne Research Inc.), an aethalometer (Aerosol d.o.o.) and fine offline quartz-fibre filters, respectively. These data were combined in a MTR PMF analysis preserving the high time resolution (30 min for the NR-PM1 and BC, and 24 h every 4th day for the offline samples). The MTR-PMF outcomes were assessed varying the time resolution of the high-resolution data subset and exploring the error weightings of both subsets. The time resolution assessment revealed that averaging the high-resolution data was disadvantageous in terms of model residuals and environmental interpretability. The MTR-PMF resolved eight PM1 sources: ammonium sulphate + heavy oil combustion (25%), ammonium nitrate + ammonium chloride (17%), aged secondary organic aerosol (SOA) (16%), traffic (14%), biomass burning (9%), fresh SOA (8%), cooking-like organic aerosol (5%), and industry (4%). The MTR-PMF technique identified two more sources relative to the 24 h base case data subset using the same species and four more with respect to the pseudo-conventional approach mimicking offline PMF, indicating that the combination of both high and low TR data is significantly beneficial for SA. Besides the higher number of sources, the MTR-PMF technique has enabled some sources disentanglement compared to the pseudo-conventional and base case PMF as well as the characterisation of their intra-day patterns.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Poluição do Ar/análise , Aerossóis/análise
15.
Environ Int ; 176: 107961, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37216837

RESUMO

This study aims to support the development of Spain's Ozone Mitigation Plan by evaluating the present-day spatial variation (2015-2019) and trends (2008-2019) for seven ground-level ozone (O3) metrics relevant for human/ecosystems exposure and regulatory purposes. Results indicate that the spatial variation of O3 depends on the part of the O3 distribution being analyzed. Metrics associated with moderate O3 concentrations depict an increasing O3 gradient between the northern and Mediterranean coasts due to climatic factors, while for metrics considering the upper end of the O3 distribution, this climatic gradient tends to attenuate in favor of hotspot regions pointing to relevant local/regional O3 formation. A classification of atmospheric regions in Spain is proposed based on their O3 pollution patterns, to identify priority areas (or O3 hotspots) where local/regional precursor abatement might significantly reduce O3 during pollution episodes. The trends assessment reveals a narrowing of the O3 distribution at the national level, with metrics influenced by lower concentrations tending to increase over time, and those reflecting the higher end of the O3 distribution tending to decrease. While most stations show no statistically significant variations, contrasting O3 trends are evident among the O3 hotspots. The Madrid area exhibits the majority of upward trends across all metrics, frequently with the highest increasing rates, implying increasing O3 associated with both chronic and episodic exposure. The Valencian Community area exhibits a mixed variation pattern, with moderate to high O3 metrics increasing and peak metrics decreasing, while O3 in areas downwind of Barcelona, the Guadalquivir Valley and Puertollano shows no variations. Sevilla is the only large Spanish city with generalized O3 decreasing trends. The different O3 trends among hotspots highlight the need for mitigation measures to be designed at a local/regional scale to be effective. This approach may offer valuable insights for other countries developing O3 mitigation plans.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Humanos , Ozônio/análise , Espanha , Poluentes Atmosféricos/análise , Ecossistema , Poluição do Ar/análise , Monitoramento Ambiental/métodos
16.
Environ Int ; 166: 107325, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716508

RESUMO

Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.

17.
Environ Sci Pollut Res Int ; 29(24): 36255-36272, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35060032

RESUMO

PM10 was collected during an EMEP winter campaign of 2017-2018 in two urban background sites in Barcelona (BCN) and Granada (GRA), two Mediterranean cities in the coast and inland, respectively. The concentrations of PM10, organic carbon (OC), elemental carbon (EC), and organic molecular tracer compounds such as hopanes, anhydro-saccharides, polycyclic aromatic hydrocarbon, and several biogenic and anthropogenic markers of secondary organic aerosols (SOA) were two times higher in GRA compared to BCN and related to the atmospheric mixing heights in the areas. Multivariate curve resolution (MCR-ALS) source apportionment analysis identified primary emissions sources (traffic + biomass burning) that were responsible for the 50% and 20% of the organic aerosol contributions in Granada and Barcelona, respectively. The contribution of biomass burning was higher in the holidays than in the working days in GRA while all primary combustion emissions decreased in holidays in BCN. The MCR-ALS identified that oxidative species and SOA formation processes contributed to 40% and 80% in Granada and Barcelona, respectively. Aged SOA was dominant in Granada and Barcelona under stagnant atmospheric conditions and in presence of air pollution. On the other hand, fresh SOA contributions from α-pinene oxidation (cis-pinonic acid) were three times higher in Barcelona than Granada and could be related to new particle formation, essentially due to overall cleaner air conditions and elevated air temperatures.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Cidades , Monitoramento Ambiental , Compostos Orgânicos/análise , Material Particulado/análise , Estações do Ano
18.
Environ Res ; 205: 112451, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34848209

RESUMO

Measurements of CO2 and counting of occupants were carried out in 37 public bus trips during commuting rush hours in Barcelona (NE Spain) with the aim of evaluating parameters governing ventilation inside the vehicles and proposing actions to improve it. The results show that CO2 concentrations (1039 and 934 ± 386 ppm, as average and median, during rush hours but with average reduced occupancy due to the fair to be infected by SARS-CoV-2 during the measurement period, and measured in the middle of the busses) are in the lower range of values recorded in the literature for public buses, however an improvement in ventilation is required in a significant proportion of the journeys. Thus, we found better ventilation in the older Euro 3+ (retrofitted with filter traps and selective catalytic reduction) and Euro 5 buses (average 918 ± 257 ppm) than in the hermetically closed new Euro 6 ones (1111 ± 432 ppm). The opening of the windows in the older buses yielded higher ventilation rates (778 ± 432 ppm). The opening of all doors at all stops increases the ventilation by causing a fall in concentrations of 200-350 ppm below inter-stop concentrations, with this effect typically lasting 40-50 s in the hermetically closed new Euro 6 hybrid buses. Based on these results a number of recommendations are offered in order to improve ventilation, including measurement of CO2 and occupancy, and installation of ventilation fans on the top of the hermetically closed new buses, introducing outdoor air when a given concentration threshold is exceeded. In these cases, a CO2 sensor installed in the outdoor air intake is also recommended to take into account external CO2 contributions.


Assuntos
Poluição do Ar em Ambientes Fechados , COVID-19 , Poluição do Ar em Ambientes Fechados/análise , Dióxido de Carbono/análise , Humanos , Veículos Automotores , SARS-CoV-2 , Meios de Transporte , Ventilação
19.
Sci Total Environ ; 795: 148728, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34328931

RESUMO

In this work, time-series analyses of the chemical composition and source contributions of PM2.5 from an urban background station in Barcelona (BCN) and a rural background station in Montseny (MSY) in northeastern Spain from 2009 to 2018 were investigated and compared. A multisite positive matrix factorization analysis was used to compare the source contributions between the two stations, while the trends for both the chemical species and source contributions were studied using the Theil-Sen trend estimator. Between 2009 and 2018, both stations showed a statistically significant decrease in PM2.5 concentrations, which was driven by the downward trends of levels of chemical species and anthropogenic source contributions, mainly from heavy oil combustion, mixed combustion, industry, and secondary sulfate. These source contributions showed a continuous decrease over the study period, signifying the continuing success of mitigation strategies, although the trends of heavy oil combustion and secondary sulfate have flattened since 2016. Secondary nitrate also followed a significant decreasing trend in BCN, while secondary organic aerosols (SOA) very slightly decreased in MSY. The observed decreasing trends, in combination with the absence of a trend for the organic aerosols (OA) at both stations, resulted in an increase in the relative proportion of OA in PM2.5 by 12% in BCN and 9% in MSY, mostly from SOA, which increased by 7% in BCN and 4% in MSY. Thus, at the end of the study period, OA accounted for 40% and 50% of the annual mean PM2.5 at BCN and MSY, respectively. This might have relevant implications for air quality policies aiming at abating PM2.5 in the study region and for possible changes in toxicity of PM2.5 due to marked changes in composition and source apportionment.


Assuntos
Poluentes Atmosféricos , Material Particulado , Aerossóis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Nitratos , Material Particulado/análise , Espanha , Emissões de Veículos/análise
20.
Environ Int ; 155: 106662, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34098335

RESUMO

BACKGROUND: The evidence on the association between ultrafine (UFP) particles and mortality is still inconsistent. Moreover, health effects of specific UFP sources have not been explored. We assessed the impact of UFP sources on daily mortality in Barcelona, Helsinki, London, and Zurich. METHODS: UFP sources were previously identified and quantified for the four cities: daily contributions of photonucleation, two traffic sources (fresh traffic and urban, with size mode around 30 nm and 70 nm, respectively), and secondary aerosols were obtained from data from an urban background station. Different periods were investigated in each city: Barcelona 2013-2016, Helsinki 2009-2016, London 2010-2016, and Zurich 2011-2014. The associations between total particle number concentrations (PNC) and UFP sources and daily (natural, cardiovascular [CVD], and respiratory) mortality were investigated using city-specific generalized linear models (GLM) with quasi-Poisson regression. RESULTS: We found inconsistent results across cities, sources, and lags for associations with natural, CVD, and respiratory mortality. Increased risk was observed for total PNC and natural mortality in Helsinki (lag 2; 1.3% [0.07%, 2.5%]), CVD mortality in Barcelona (lag 1; 3.7% [0.17%, 7.4%]) and Zurich (lag 0; 3.8% [0.31%, 7.4%]), and respiratory mortality in London (lag 3; 2.6% [0.84%, 4.45%]) and Zurich (lag 1; 9.4% [1.0%, 17.9%]). A similar pattern of associations between health outcomes and total PNC was followed by the fresh traffic source, for which we also found the same associations and lags as for total PNC. The urban source (mostly aged traffic) was associated with respiratory mortality in Zurich (lag 1; 12.5% [1.7%, 24.2%]) and London (lag 3; 2.4% [0.90%, 4.0%]) while the secondary source was associated with respiratory mortality in Zurich (lag 1: 12.0% [0.63%, 24.5%]) and Helsinki (4.7% [0.11%, 9.5%]). Reduced risk for the photonucleation source was observed for respiratory mortality in Barcelona (lag 2, -8.6% [-14.5%, -2.4%]) and for CVD mortality in Helsinki, as this source is present only in clean atmospheres (lag 1, -1.48 [-2.75, -0.21]). CONCLUSIONS: We found inconsistent results across cities, sources and lags for associations with natural, CVD, and respiratory mortality.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Poluição do Ar/análise , Cidades , Humanos , Tamanho da Partícula , Material Particulado/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA