Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Catheter Cardiovasc Interv ; 103(7): 1101-1110, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532517

RESUMO

Structural valve deterioration after aortic root replacement (ARR) surgery may be treated by transcatheter valve-in-valve (ViV-TAVI) intervention. However, several technical challenges and outcomes are not well described. The aim of the present review was to analyze the outcomes of ViV-TAVI in deteriorated ARR. This review included studies reporting any form of transcatheter valvular intervention in patients with a previous ARR. All forms of ARR were considered, as long as the entire root was replaced. Pubmed, ScienceDirect, SciELO, DOAJ, and Cochrane library databases were searched until September 2023. Overall, 86 patients were included from 31 articles that met our inclusion criteria out of 741 potentially eligible studies. In the entire population, the mean time from ARR to reintervention was 11.0 years (range: 0.33-22). The most frequently performed techniques/grafts for ARR was homograft (67.4%) and the main indication for intervention was aortic regurgitation (69.7%). Twenty-three articles reported no postoperative complications. Six (7.0%) patients required permanent pacemaker implantation (PPI) after the ViV-TAVI procedure, and 4 (4.7%) patients had a second ViV-TAVI implant. There were three device migrations (3.5%) and 1 stroke (1.2%). Patients with previous ARR present a high surgical risk. ViV-TAVI can be considered in selected patients, despite unique technical challenges that need to be carefully addressed according to the characteristics of the previous surgery and on computed tomography analysis.


Assuntos
Valva Aórtica , Próteses Valvulares Cardíacas , Substituição da Valva Aórtica Transcateter , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valva Aórtica/cirurgia , Valva Aórtica/diagnóstico por imagem , Valva Aórtica/fisiopatologia , Insuficiência da Valva Aórtica/diagnóstico por imagem , Insuficiência da Valva Aórtica/fisiopatologia , Insuficiência da Valva Aórtica/cirurgia , Insuficiência da Valva Aórtica/etiologia , Prótese Vascular , Implante de Prótese Vascular/instrumentação , Implante de Prótese Vascular/efeitos adversos , Estimulação Cardíaca Artificial , Implante de Prótese de Valva Cardíaca/instrumentação , Implante de Prótese de Valva Cardíaca/efeitos adversos , Falha de Prótese , Recuperação de Função Fisiológica , Medição de Risco , Fatores de Risco , Fatores de Tempo , Substituição da Valva Aórtica Transcateter/instrumentação , Substituição da Valva Aórtica Transcateter/efeitos adversos , Resultado do Tratamento
2.
Eur J Anaesthesiol ; 35(11): 825-830, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29708906

RESUMO

BACKGROUND: Continuous monitoring of core temperature is essential during major surgery as a way of improving patient safety. Oesophageal probes or specific arterial catheters are invasive methods used in this setting. A new noninvasive device based on zero-heat-flux (ZHF) technique (SpotOn) seems promising but has been poorly investigated during rapid core temperature changes (RCTC). OBJECTIVE: To assess the accuracy of a SpotOn sensor vs. an oesophageal probe or specific arterial catheter during a slow change in core temperature of less than 1 °C within 30 min and RCTC ≥ 1 °C within 30 min. DESIGN: Prospective observational study. SETTING: Operating rooms at the University Hospital of Poitiers, France. PATIENTS: Fifty patients scheduled for major abdominal surgery under general anaesthesia were enrolled from June 2015 to March 2016. Data from 49 patients were finally analysed. Among these, 15 patients were treated with hyperthermic intraperitoneal chemotherapy. INTERVENTION: Each patient had a ZHF sensor placed on the skin surface of the forehead (TempZHF) and an oesophageal probe (TempEso) used as a reference method. Twenty-two patients also had a thermodilution arterial catheter (TempArt) placed in the axillary artery. MAIN OUTCOME MEASURES: Core temperature was continuously recorded from the three devices after induction of anaesthesia. Comparison of temperature measurements between methods was made using the Bland and Altman method during two separate periods according to the speed of core temperature changes. RESULTS: Compared with TempEso, bias and limits of agreement for TempZHF were 0.1 ±â€Š0.5 °C during slow core temperature changes periods and 0.6 ±â€Š1.8 °C during RCTC periods (P = 0.0002). Compared with TempArt, these values were -0.1 ±â€Š0.4 and 0.5 ±â€Š1.7 °C, respectively (P = 0.0039). The ZHF sensor was well tolerated. CONCLUSION: A SpotOn sensor using the ZHF method seems reliable for core temperature monitoring during abdominal surgery when variations in core temperature are slow rather than rapid. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT02869828.


Assuntos
Cateterismo Periférico/métodos , Esôfago/fisiologia , Monitorização Intraoperatória/métodos , Temperatura Cutânea/fisiologia , Idoso , Temperatura Corporal/fisiologia , Cateterismo Periférico/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória/instrumentação , Estudos Prospectivos , Termodiluição/instrumentação , Termodiluição/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA