Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712107

RESUMO

Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces the oncometabolite D-2-hydroxyglutarate (D2HG), which can inhibit DNA and histone demethylases to drive tumorigenesis via epigenetic changes. Though heterozygous point mutations in patients primarily affect residue R132, there are myriad D2HG-producing mutants that display unique catalytic efficiency of D2HG production. Here, we show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of IDH1 R132Q in cellular and mouse xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H-expressing models. Reduced representation bisulfite sequencing (RRBS) analysis of xenograft tumors shows expression of IDH1 R132Q relative to R132H leads to hypermethylation patterns in pathways associated with DNA damage. Transcriptome analysis indicates that the IDH1 R132Q mutation has a more aggressive pro-tumor phenotype, with members of EGFR, Wnt, and PI3K signaling pathways differentially expressed, perhaps through non-epigenetic routes. Together, these data suggest that the catalytic efficiency of IDH1 mutants modulate D2HG levels in cellular and in vivo models, resulting in unique epigenetic and transcriptomic consequences where higher D2HG levels appear to be associated with more aggressive tumors.

2.
Nat Commun ; 15(1): 3785, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710674

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant unusually preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employ static and dynamic structural methods and observe that, compared to R132H, the R132Q active site adopts a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling reveals a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.


Assuntos
Domínio Catalítico , Isocitrato Desidrogenase , Mutação , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Humanos , Cinética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/farmacologia
3.
Res Sq ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38464189

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employed static and dynamic structural methods and found that, compared to R132H, the R132Q active site adopted a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling revealed a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.

4.
bioRxiv ; 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38260668

RESUMO

Mutations in human isocitrate dehydrogenase 1 (IDH1) drive tumor formation in a variety of cancers by replacing its conventional activity with a neomorphic activity that generates an oncometabolite. Little is understood of the mechanistic differences among tumor-driving IDH1 mutants. We previously reported that the R132Q mutant uniquely preserves conventional activity while catalyzing robust oncometabolite production, allowing an opportunity to compare these reaction mechanisms within a single active site. Here, we employed static and dynamic structural methods and found that, compared to R132H, the R132Q active site adopted a conformation primed for catalysis with optimized substrate binding and hydride transfer to drive improved conventional and neomorphic activity over R132H. This active site remodeling revealed a possible mechanism of resistance to selective mutant IDH1 therapeutic inhibitors. This work enhances our understanding of fundamental IDH1 mechanisms while pinpointing regions for improving inhibitor selectivity.

5.
Biochemistry ; 62(6): 1145-1159, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36854124

RESUMO

Human isocitrate dehydrogenase 1 (IDH1) is a highly conserved metabolic enzyme that catalyzes the interconversion of isocitrate and α-ketoglutarate. Kinetic and structural studies with IDH1 have revealed evidence of striking conformational changes that occur upon binding of its substrates, isocitrate and NADP+, and its catalytic metal cation. Here, we used hydrogen-deuterium exchange mass spectrometry (HDX-MS) to build a comprehensive map of the dynamic conformational changes experienced by IDH1 upon ligand binding. IDH1 proved well-suited for HDX-MS analysis, allowing us to capture profound changes in solvent accessibility at substrate binding sites and at a known regulatory region, as well as at more distant local subdomains that appear to support closure of this protein into its active conformation. HDX-MS analysis suggested that IDH1 is primarily purified with NADP(H) bound in the absence of its metal cation. Subsequent metal cation binding, even in the absence of isocitrate, was critical for driving large conformational changes. WT IDH1 folded into its fully closed conformation only when the full complement of substrates and metal was present. Finally, we show evidence supporting a previously hypothesized partially open conformation that forms prior to the catalytically active state, and we propose this conformation is driven by isocitrate binding in the absence of metal.


Assuntos
Espectrometria de Massa com Troca Hidrogênio-Deutério , Isocitrato Desidrogenase , Humanos , Isocitrato Desidrogenase/química , Deutério , Isocitratos/metabolismo , Medição da Troca de Deutério , NADP/metabolismo , Ligantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA