Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Pharmaceuticals (Basel) ; 17(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38794200

RESUMO

Osteoarthritis (OA) remains a chronic incurable condition, presenting substantial challenges in treatment. This study explores a novel strategy by investigating the concurrent use of cuminaldehyde, a natural compound, with indomethacin in animal models of MIA-induced OA. Our results demonstrate that the co-administration of cuminaldehyde and indomethacin does indeed produce a superior effect when compared to these compounds individually, significantly enhancing therapeutic outcomes. This effect is evidenced by a marked reduction in pro-inflammatory cytokines IL-6 and IFN-γ, alongside a significant increase in the anti-inflammatory cytokine IL-10, compared to treatments with each compound alone. Radiographic analyses further confirm the preservation of joint integrity and a reduction in osteoarthritic damage, highlighting the association's efficacy in cartilage-reducing damage. These findings suggests that the association of cuminaldehyde and indomethacin not only slows OA progression but also offers enhanced cartilage-reducing damage and fosters the production of protective cytokines. This study underscores the potential benefits of integrating natural products with pharmaceuticals in OA management and stresses the importance of further research to fully understand the mechanisms underlying the observed potentiated effects.

2.
Trop Anim Health Prod ; 56(1): 28, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38151553

RESUMO

The objective was to assess the in vitro rumen fermentation characteristics, methane production, and biohydrogenation of unsaturated fatty acids of diets with two protected fat (PF) sources from soybean or linseed oil, two levels of PF (0 and 6%) and two forage sources (canola silage (CS) or alfalfa hay (AH)) in a factorial 2x2x2 completely randomised design. Only fatty acids content at final incubation was affected (P<0.05) by triple interaction, where C18:2 was highest with AH plus 6% soybean PF (4.41mg/g DM), while C18:3 was with CS plus 6% linseed oil protected (1.98mg/g DM). C18:2 cis-9 trans-11 had high concentration (308 mg/g DM; P<0.05) with AH plus 6% PF regardless PF type, and C18:1 trans-11 was higher with 6% PF than without PF (13.41 vs 7.89 mg/g DM). Cumulative methane production was not affected by treatments (0.9973 ± 0.1549 mmol/g DM; P>0.05). Gas production and in vitro NDF digestibility were lower with 6% PF of linseed than soybean (160.88 vs 150.97 ml; and 69.28vs 62.89 %, respectively P<0.05). With linseed PF the NH3-N concentration was highest in CS than AH (41.27 vs 27.95 mg/dL; P<0.05) but IVDMD had the opposite result (78.54 vs 85.04). In conclusion, although methane production was not affected and in vitro digestibility and gas production were reduced with linseed PF, the concentration of C18:3 and C18:1 trans-11 was increased, which could improve the lipid profile of milk. The negative effects on digestibility were less with AH than of CS regardless of PF type and level.


Assuntos
Linho , Óleo de Semente do Linho , Feminino , Animais , Óleo de Semente do Linho/metabolismo , Lactação , Rúmen/metabolismo , Dieta/veterinária , Ácidos Graxos Insaturados , Ácidos Graxos/metabolismo , Leite , Silagem/análise , Metano/metabolismo , Fermentação , Zea mays
3.
JAMA Cardiol ; 8(12): 1119-1128, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37819656

RESUMO

Importance: Cardiovascular disease is a leading cause of morbidity in cancer survivors, which makes strategies aimed at mitigating cardiovascular risk a subject of major contemporary importance. Objective: To assess whether a center-based cardiac rehabilitation (CBCR) framework compared with usual care encompassing community-based exercise training (CBET) is superior for cardiorespiratory fitness improvement and cardiovascular risk factor control among cancer survivors with high cardiovascular risk. Design, Setting, and Participants: This prospective, single-center, randomized clinical trial (CORE trial) included adult cancer survivors who had exposure to cardiotoxic cancer treatment and/or previous cardiovascular disease. Enrollment took place from March 1, 2021, to March 31, 2022. End points were assessed at baseline and after the 8-week intervention. Interventions: Participants were randomly assigned in a 1:1 ratio to 8 weeks of CBCR or CBET. The combined aerobic and resistance exercise sessions were performed twice a week. Main Outcomes and Measures: The powered primary efficacy measure was change in peak oxygen consumption (V̇o2) at 2 months. Secondary outcomes included handgrip maximal strength, functional performance, blood pressure (BP), body composition, body mass index (BMI; calculated as weight in kilograms divided by height in meters squared), lipid profile, plasma biomarker levels, physical activity (PA) levels, psychological distress, quality of life (QOL), and health literacy. Results: A total of 75 participants completed the study (mean [SD] age, 53.6 [12.3] years; 58 [77.3%] female), with 38 in the CBCR group and 37 in the CBET group. Participants in CBCR achieved a greater mean (SD) increase in peak V̇o2 than those in CBET (2.1 [2.8] mL/kg/min vs 0.8 [2.5] mL/kg/min), with a between-group mean difference of 1.3 mL/kg/min (95% CI, 0.1-2.6 mL/kg/min; P = .03). Compared with the CBET group, the CBCR group also attained a greater mean (SD) reduction in systolic BP (-12.3 [11.8] mm Hg vs -1.9 [12.9] mm Hg; P < .001), diastolic BP (-5.0 [5.7] mm Hg vs -0.5 [7.0] mm Hg; P = .003), and BMI (-1.2 [0.9] vs 0.2 [0.7]; P < .001) and greater mean (SD) improvements in PA levels (1035.2 [735.7] metabolic equivalents [METs]/min/wk vs 34.1 [424.4] METs/min/wk; P < .001), QOL (14.0 [10.0] points vs 0.4 [12.9] points; P < .001), and health literacy scores (2.7 [1.6] points vs 0.1 [1.4] points; P < .001). Exercise adherence was significantly higher in the CBCR group than in the CBET group (mean [SD] sessions completed, 90.3% [11.8%] vs 68.4% [22.1%]; P < .001). Conclusion and Relevance: The CORE trial showed that a cardio-oncology rehabilitation model among cancer survivors with high cardiovascular risk was associated with greater improvements in peak V̇o2 compared with usual care encompassing an exercise intervention in a community setting. The CBCR also showed superior results in exercise adherence, cardiovascular risk factor control, QOL, and health literacy. Trial Registration: ClinicalTrials.gov Identifier: NCT05132998.


Assuntos
Sobreviventes de Câncer , Doenças Cardiovasculares , Neoplasias , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Qualidade de Vida , Estudos Prospectivos , Força da Mão , Melhoria de Qualidade , Fatores de Risco , Fatores de Risco de Doenças Cardíacas
4.
Entropy (Basel) ; 25(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895588

RESUMO

Noise suppression algorithms have been used in various tasks such as computer vision, industrial inspection, and video surveillance, among others. The robust image processing systems need to be fed with images closer to a real scene; however, sometimes, due to external factors, the data that represent the image captured are altered, which is translated into a loss of information. In this way, there are required procedures to recover data information closest to the real scene. This research project proposes a Denoising Vanilla Autoencoding (DVA) architecture by means of unsupervised neural networks for Gaussian denoising in color and grayscale images. The methodology improves other state-of-the-art architectures by means of objective numerical results. Additionally, a validation set and a high-resolution noisy image set are used, which reveal that our proposal outperforms other types of neural networks responsible for suppressing noise in images.

5.
Metabolites ; 13(9)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37755307

RESUMO

Leishmaniasis is caused by protozoans of the genus Leishmania, and its treatment is highly toxic, leading to treatment discontinuation and the emergence of resistant strains. In this study, we assessed the leishmanicidal activity and chemical composition of red propolis collected from the Amazon-dominated region of northern Tocantins State, Brazil. The MTT assay was employed to determine the samples' activity against Leishmania amazonensis promastigotes and their cytotoxicity against RAW macrophages. Spectrophotometric assays were utilised to measure the concentrations of total phenolics and flavonoids, while high-performance liquid chromatography coupled to a mass spectrometer (LC-MS/MS) was used to determine the chemical composition. An in silico study was conducted to evaluate which compounds from Brazilian Amazon red propolis may correlate with this biological activity. Brazilian Amazon red propolis exhibited a high concentration of phenolic compounds and an inhibitory activity against L. amazonensis, with an IC50 ranging from 23.37 to 36.10 µg/mL. Moreover, fractionation of the propolis yielded a fraction with enhanced bioactivity (16.11 µg/mL). Interestingly, neither the propolis nor its most active fraction showed cytotoxicity towards macrophages at concentrations up to 200 µg/mL. The red colour and the presence of isoflavonoid components (isoflavones, isoflavans, and pterocarpans) confirm that the substance is Brazilian red propolis. However, the absence of polyprenylated benzophenones suggests that this is a new variety of Brazilian red propolis. The in silico study performed with two of the main leishmanicidal drug targets using all compounds identified in Amazon red propolis reported that liquiritigenin was the compound that exhibited the best electronic interaction parameters, which was confirmed in an assay with promastigotes using a standard. The findings indicate that Amazon red propolis possesses leishmanicidal activity, low toxicity, and significant biotechnological potential.

6.
Disabil Rehabil ; : 1-8, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424233

RESUMO

Purpose: Aerobic exercise training programs decrease blood pressure in individuals with resistant hypertension. However, participants' experiences regarding exercise training participation are unknown and often undervalued. Therefore, participant's experiences and program acceptability of the exercise arm of the EnRicH trial, a randomized clinical trial investigating the effect of a 12-week aerobic exercise training program in individuals with resistant hypertension were analysed.Methods: An exploratory qualitative study was conducted with twenty individuals with resistant hypertension (11 males, mean age 58.9 ± 8.9 years), after the exercise program. Four focus group interviews were performed to explore participants' perspectives. The interviews were digitally audio-recorded, transcribed verbatim, and subjected to thematic analysis.Results: Five themes emerged from the data analyses: 1) main impacts of participating in the exercise program; 2) facilitators of adherence; 3) perceived barriers; 4) perception of the program structure; and 5) global satisfaction with the program. Positive physical and emotional changes were reported, associated with reduced perceived stress and irritability, and decreased blood pressure. Adherence to the exercise program was facilitated by personalized supervision and feedback, the personal commitment to attend the training sessions, and different schedule options. Lack of motivation, peer support, physical health limitations, and difficulty in conciliating schedules were identified as barriers to the maintenance of exercise training after the program.Conclusion: The qualitative analysis demonstrates the acceptability of the program. Peer and health professional's support, commitment to health professionals, and boosting individual-perceived advantages are key-points to promote participants adherence.Implications for RehabilitationExercising in small groups seems to provide peer support, facilitating maintenance of exercise trainingProviding feedback on the health gains achieved by participants is important to increase adherence to exerciseEstablishing good and empathic communication between health professionals and participants facilitates adherence to exercise trainingProviding personal nutritional counselling may improve patient satisfactionIndividually tailored exercise programs may facilitate exercising for participants with physical limitationsProviding different training schedules may increase adherence and maintenance of exercise training.

7.
Phytother Res ; 37(6): 2484-2512, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37098735

RESUMO

Ovarian cancer is the second-leading cause of death among women with cancer of the genital tract. Currently, drugs derived from platinum and taxanes constitute the majority of ovarian cancer treatments. Patients undergoing this chemotherapy are susceptible to cumulative toxic effects and resistance to chemotherapy. Therefore, it is crucial to identify treatment options that are both more effective and better tolerated by patients. Phytochemicals in this context are plant-derived chemicals with antitumor activity that can be used as therapeutic or adjuvant agents in the treatment of ovarian cancer. Consequently, the purpose of this literature review is to demonstrate through existing pre-clinical and clinical trials the potential of phytochemicals in the treatment of ovarian cancer, the mechanisms of action involved, and to contribute to the development of new therapeutic options for ovarian cancer. For this review, the databases PubMed, Scopus, Science Direct, and ClinicalTrials.gov were queried between 2010 and 2022 using terms such as "ovarian cancer," "phytochemicals," "phenolic compounds," "terpenes," and "alkaloids." The present review summarized the possible molecular mechanisms of action by which phytochemicals, such as phenolic acids, flavonoids, diterpenes, triterpenes, saponins, and alkaloids, inhibit this type of cancer, specifically the ability of phytochemicals to induce cell growth regulation, apoptosis, oxidative stress reduction, anti-angiogenesis, and chemosensitization of tumors in ovarian cancer. As their action and cellular mechanism have already been demonstrated in several pre-clinical trials, the phytochemicals identified in our study have the potential to be investigated for the treatment of ovarian cancer. Through pre-clinical and clinical trials, our study demonstrates the potential of phytochemicals in the treatment of ovarian cancer, contributing to the development of novel therapeutic options for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Apoptose , Plantas , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico
8.
Metabolites ; 13(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36984837

RESUMO

Osteoarthritis (OA) is a chronic degenerative disease that has a significant global impact. It is associated with aging and characterized by widespread joint destruction. Cuminaldehyde is a biologically active component of essential oils that has shown promise in the treatment of nociceptive and inflammatory diseases. This study investigated the effects of cuminaldehyde on an experimental model of osteoarthritis induced in rat knees. Cuminaldehyde was found to be as effective as indomethacin in reducing pain in all evaluated tests, including forced walking, functional disability of weight distribution on the legs, and spontaneous pain in animals with osteoarthritis. The knees of animals treated with cuminaldehyde had significantly higher radiographic and histopathological scores than those of animals that did not receive the treatment. Cuminaldehyde also modulated the production of pro-inflammatory cytokines. In vitro assays showed that cuminaldehyde preferentially inhibits COX-2 enzyme activity. In silico studies demonstrated that cuminaldehyde has satisfactory energy affinity parameters with opioid receptors and COX-2. These findings suggest that cuminaldehyde's anti-inflammatory activity is multifactorial, acting through multiple pathways. Its nociceptive activity occurs via central and peripheral mechanisms. Cuminaldehyde modulates the immune response of the inflammatory process and may be considered a leading compound for the development of new anti-inflammatory and analgesic drugs.

9.
Metabolites ; 13(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36837904

RESUMO

Vernonanthura brasiliana (L.) H. Rob is a medicinal plant used for the treatment of several infections. This study aimed to evaluate the antileishmanial activity of V. brasiliana leaves using in vitro and in silico approaches. The chemical composition of V. brasiliana leaf extract was determined through liquid chromatography-mass spectrometry (LC-MS). The inhibitory activity against Leishmania amazonensis promastigote was evaluated by the MTT method. In silico analysis was performed using Lanosterol 14alpha-demethylase (CYP51) as the target. The toxicity analysis was performed in RAW 264.7 cells and Tenebrio molitor larvae. LC-MS revealed the presence of 14 compounds in V. brasiliana crude extract, including flavonoids, flavones, sesquiterpene lactones, and quinic acids. Eriodictol (ΔGbind = -9.0), luteolin (ΔGbind = -8.7), and apigenin (ΔGbind = -8.6) obtained greater strength of molecular interaction with lanosterol demethylase in the molecular docking study. The hexane fraction of V. brasiliana showed the best leishmanicidal activity against L. amazonensis in vitro (IC50 12.44 ± 0.875 µg·mL-1) and low cytotoxicity in RAW 264.7 cells (CC50 314.89 µg·mL-1, SI = 25.30) and T. molitor larvae. However, the hexane fraction and Amphotericin-B had antagonistic interaction (FICI index ≥ 4.0). This study revealed that V. brasiliana and its metabolites are potential sources of lead compounds for drugs for leishmaniasis treatment.

10.
Antibiotics (Basel) ; 11(12)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36551490

RESUMO

In folk medicine, Vismia guianensis is used to treat skin diseases and mycoses in the Amazon region. We evaluated the anti-Candida activity of the hydroalcoholic extract from the leaves of Vismia guianensis (EHVG). HPLC-PDA and FIA-ESI-IT-MSn were used to chemically characterize EHVG. The anti-Candida activity was determined in vitro by the minimum inhibitory concentrations (MIC) against Candida glabrata (ATCC-2001); Candida albicans (ATCC-90028, ATCC-14053, and ATCC-SC5314), and C. albicans clinical isolates. EHVG effects on adhesion, growth, and biofilm formation were also determined. Molecular docking was used to predict targets for EHVG compounds. The main compounds identified included anthraquinone, vismione D, kaempferol, quercetin, and vitexin. EHVG was fungicidal against all tested strains. C. albicans ATCC 14053 and C. glabrata ATCC 2001 were the most sensitive strains, as the extract inhibited their virulence factors. In silico analysis indicated that vismione D presented the best antifungal activity, since it was the most effective in inhibiting CaCYP51, and may act as anti-inflammatory and antioxidant agent, according to the online PASS prediction. Overall, the data demonstrate that EHVG has an anti-Candida effect by inhibiting virulence factors of the fungi. This activity may be related to its vismione D content, indicating this compound may represent a new perspective for treating diseases caused by Candida sp.

11.
Acta bioquím. clín. latinoam ; 56(4): 490-513, dic. 2022. graf
Artigo em Espanhol | LILACS-Express | LILACS, BINACIS | ID: biblio-1439101

RESUMO

Resumen El hierro (Fe) es un elemento vital para casi todos los organismos debido a su facilidad para donar y aceptar electrones. Es cofactor de muchas proteínas y enzimas necesarias para la adecuada utilización del oxígeno y la generación de energía. Su desregulación se relaciona a procesos de estrés oxidativo y muerte celular mediada por Fe(II) denominada ferroptosis. Las células de mamíferos utilizan múltiples mecanismos para garantizar la adquisición del hierro como nutriente esencial, que se encuentra oxidado [Fe(III)], y que debe ser reducido a Fe(II) para su adecuada utilización intracelular. Cada etapa de transferencia del hierro a través de las membranas biológicas exige una reconversión de su estado de oxidado a reducido y viceversa, dependiendo del paso metabólico implicado. La distorsión de dichos procesos se asocia con varias enfermedades: desde la deficiencia de hierro debida a defectos en la adquisición o distribución del metal, que causa anemia, a la sobrecarga de hierro que resulta de una absorción excesiva de hierro o en una utilización defectuosa, que causa una sobreoferta de Fe(II) en los tejidos y que lleva a un daño oxidativo y a la muerte celular. Existen múltiples mecanismos regulatorios que en conjunto aseguran el equilibrio en la homeostasis del hierro. Esta actualización describe los avances recientes en las vías reguladoras del hierro, así como en los mecanismos subyacentes al tráfico de dicho elemento desde su absorción, principalmente biodistribución y su uso intracelular, quizás el área más importante donde se define su adecuada utilización o la muerte celular por ferroptosis.


Abstract Iron (Fe) is a vital element for almost all organisms due to its ability to donate and accept electrons with relative ease. It serves as a cofactor for many proteins and enzymes necessary for the proper use of oxygen and energy generation, and its deregulation is related to the processes of oxidative stress and iron-mediated cell death called ferroptosis. Mammalian cells use multiple mechanisms to ensure the acquisition of iron as an essential nutrient, which is normally oxidised in the form of Fe(III) and must be reduced to Fe(II) for adequate intracellular use. Each stage of iron transfer across biological membranes requires a reconversion of its state from oxidised to reduced and vice versa, depending on the metabolic step involved. Distortion of these processes is associated with various diseases, such as iron deficiency due to defects in the acquisition or distribution of the metal that causes anemia, as well as iron overload from excessive iron absorption or defective use, which results in an oversupply of Fe(II) in tissues leading to oxidative damage and cell death. There are multiple regulatory mechanisms that together ensure the balance in iron homeostasis. This update describes the recent advances in the iron regulatory pathways, as well as in the mechanisms underlying iron trafficking from its absorption, mainly biodistribution and its intracellular use, perhaps the most important area where its adequate utilisation or cell death by ferroptosis is defined.


Resumo O ferro (Fe) é um elemento vital para quase todos os organismos devido à sua capacidade de doar e aceitar elétrons com relativa facilidade. O ferro serve como cofator para muitas proteínas e enzimas necessárias para o uso adequado do oxigênio e geração de energia, e a sua desregulação está relacionada a processos de estresse oxidativo e morte celular mediada por Fe(II) denominado ferroptose. As células de mamíferos utilizam múltiplos mecanismos para garantir a aquisição de ferro como nutriente essencial, que normalmente é oxidado na forma de Fe(III) e deve ser reduzido a Fe(II) para o uso intracelular adequado. Cada estágio de transferência de Fe através das membranas biológicas requer uma reconversão de seu estado de oxidado para reduzido e vice-versa, dependendo da etapa metabólica envolvida. A distorção desses processos está associada a várias doenças: desde a deficiência de ferro devido a defeitos na aquisição ou distribuição do metal que causa a anemia, até a sobrecarga de ferro resultante da absorção excessiva de ferro ou utilização defeituosa, que causa um excesso de oferta de Fe(II) nos tecidos levando ao dano oxidativo e morte celular. Existem múltiplos mecanismos regulatórios que juntos garantem o equilíbrio na homeostase do ferro. Esta atualização descreve os avanços recentes nas vias reguladoras do ferro, bem como nos mecanismos subjacentes ao tráfico deste elemento desde a sua absorção, principalmente biodistribuição e seu uso intracelular, talvez a área mais importante onde sua utilização adequada ou morte celular por ferroptose é definido.

12.
Metabolites ; 12(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36355097

RESUMO

Candida albicans is a human pathogen that is part of the healthy microbiome. However, it is often associated with opportunistic fungal infections. The treatment of these infections is challenging because prolonged exposure to antifungal drugs can culminate in fungal resistance during therapy, and there is a limited number of available drugs. Therefore, this study investigated the antifungal activity of ononin by in silico and in vitro assays, and in Tenebrio molitor as an alternative in vivo model of infection caused by C. albicans. Ononin is an isoflavone glycoside derived from formononetin that has various biological activities. According in silico evaluation, ononin showed the best electron affinity in molecular docking with CaCYP51, with a binding free energy of -10.89 kcal/mol, superior to that of the antifungal drugs fluconazole and posaconazole. The ononin + CaCYP51 complex formed hydrogen bonds with Tyr132, Ser378, Phe380, and Met508, as well as hydrophobic connections with Tyr118, Leu121, Phe126, Leu131, Ile304, and Leu309, and interactions with the heme group. Ononin exerted anti-Candida albicans activity, with MIC between 3.9 and 7.8 µg/mL, and inhibited young and mature biofilms, with a reduction in cell density and metabolic activity of 50 to 80%. The compound was not cytotoxic to sheep red blood cells at concentrations up to 1000 µg/mL. Larvae of the mealworm T. molitor were used as an alternative in vivo model of C. albicans infection. Ononin was able to prolong larval survival at concentrations of 0.5, 1, and 5 mg/kg, and was not toxic up to a concentration of 20 mg/kg. Moreover, ononin reduced the fungal charge in treated animals. In conclusion, our results suggest that ononin has anti-Candida albicans activity and is a potential candidate for the development of new therapeutic alternatives.

13.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36145266

RESUMO

Since it acquired pandemic status, SARS-CoV-2 has been causing all kinds of damage all over the world. More than 6.3 million people have died, and many cases of sequelae are in survivors. Currently, the only products available to most of the world's population to fight the pandemic are vaccines, which still need improvement since the number of new cases, admissions into intensive care units, and deaths are again reaching worrying rates, which makes it essential to compounds that can be used during infection, reducing the impacts of the disease. Plant metabolites are recognized sources of diverse biological activities and are the safest way to research anti-SARS-CoV-2 compounds. The present study computationally evaluated 55 plant compounds in five SARS-CoV-2 targets such Main Protease (Mpro or 3CL or MainPro), RNA-dependent RNA polymerase (RdRp), Papain-Like Protease (PLpro), NSP15 Endoribonuclease, Spike Protein (Protein S or Spro) and human Angiotensin-converting enzyme 2 (ACE-2) followed by in vitro evaluation of their potential for the inhibition of the interaction of the SARS-CoV-2 Spro with human ACE-2. The in silico results indicated that, in general, amentoflavone, 7-O-galloylquercetin, kaempferitrin, and gallagic acid were the compounds with the strongest electronic interaction parameters with the selected targets. Through the data obtained, we can demonstrate that although the indication of individual interaction of plant metabolites with both Spro and ACE-2, the metabolites evaluated were not able to inhibit the interaction between these two structures in the in vitro test. Despite this, these molecules still must be considered in the research of therapeutic agents for treatment of patients affected by COVID-19 since the activity on other targets and influence on the dynamics of viral infection during the interaction Spro x ACE-2 should be investigated.

14.
An Acad Bras Cienc ; 94(3): e20210191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35857959

RESUMO

This study estimated the potential effects of climate change on peripheral plant diversity by predicting the distribution of species from Cerrado of Northern Brazil. Ecological niche modeling was used to provide present and future projections of responses in terms of occurrence of ten woody species based on four algorithms and four future climate change scenarios for the year 2050. Potential refuge areas for conservation actions were identified, and evidence of the vulnerability of the flora was demonstrated based on the disparity between potential areas of climate stability amid current protected areas. The results suggested a lack of pattern between the scenarios and an idiosyncratic response of the species, indicating different impacts on plant communities and the existence of unequal stable alternative conditions, which could bring consequences to the ecological relationships and functionality of the floras. Even in the most pessimistic scenarios, most species presented an expansion of potential occurrence areas, suppressing or cohabiting with species of adjacent biomes. Typically marginal plants were the most sensitive. Overlapping adequate habitats are concentrated in the NBC. The analysis of habitats in relation to anthropized areas and PAs demonstrate low future effectiveness in the protection of these savannas.


Assuntos
Mudança Climática , Pradaria , Brasil , Ecossistema , Plantas
15.
Clin Biomech (Bristol, Avon) ; 94: 105367, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088527

RESUMO

BACKGROUND: Screw insertion to bones is a fundamental skill in orthopedic, spine and cranio-maxillofacial surgery. Applying the correct tightening torque is critical when compressing and fixating bone fragments. Overtightening yields in plastic deformation of the bone and destruction of the screw-bone interface, damaging the construct's stability. The surgeon is required to achieve sufficient hold and compression without stripping the bone. Several studies have investigated these skills, demonstrating much potential to enhance the future surgeons' capabilities. This study presents a novel training module, combining direct tightening followed by deliberate striping with immediate feedback suggested to enhance the surgeon's tactile perception and improve skill. METHODS: A prospective single-blinded cohort study was run. Twenty surgeons from various disciplines, excluding orthopedic and maxillo-facial surgeons, were trained using an orthopedic screws insertion model, comprised of synthetic bones. Training sessions considered inserting 40 screws into normal and osteoporotic bone models, experiencing deliberate stripping of the screws and feedback for their performance in three different sessions. FINDINGS: Success rate increased between sessions - by 24% to 48% in normal bone, and by 37% to 52% in osteoporotic bone. Stripping rate decreased between sessions - by 37.5% to 18.5% in normal bone, and by 29% to 14% in osteoporotic bone. Average ratio between tightening torque and maximum possible torque before bone stripping improved gradually and consistently from 67.3% to 81.6% in normal bone (p < 0.001), and slightly from 76.4% to 77.5% in osteoporotic bone (p = 0.026). INTERPRETATION: Immediate feedback with deliberate stripping and external feedback using a digital torque measuring screwdriver may improve cortical screw insertion technique in the surgeons' community.


Assuntos
Parafusos Ósseos , Osteoporose , Estudos de Coortes , Retroalimentação , Humanos , Estudos Prospectivos
16.
Sensors (Basel) ; 21(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34770592

RESUMO

Non-standard diesel blends can be harmful to the environment and human health. In this context, a simple analytical method to estimate the biodiesel mixture ratio in diesel was developed based on impedance spectroscopy (IS) associated with interdigitated sensors. In this article, four different interdigitated sensors with varied comb spacing (G) were simulated using the COMSOL Multiphysics software. Based on finite element simulations, four interdigitated electrode architectures were manufactured and evaluated. The best geometry was chosen according to theoretical data simulations, and its interdigitated electrodes were manufactured for the compositional evaluation of pseudo-binary biodiesel-diesel mixtures. According to the X-ray powder diffraction technique, the deposition of the conductive layer (Au0) over the surface of the dielectric substrate (SiO2) did not alter its phase composition. In the analysis of AFM and SEM, it was possible to observe irregular edges on the electrodes, possibly related to the manufacturing process of the thin layers and mechanical stability. Another characteristic observed in the AFM images was the height of the step of the gold layer of the sensor. Several cross sections were obtained, and the mean step value was 225.71 ± 0.0032 nm. Although there were differences in the roughness, the whole sensor had nanometric roughness. Based on the finite element method simulation performed, it can be assumed that the geometric parameters more suitable for the manufacturing of the electrode are W = 20 µm, L = 1000 µm, G = 50 µm, and N = 40 digits. The electrical characterization performed by impedance spectroscopy showed that we could differentiate between biodiesel and diesel fuels and their pseudo-binary mixtures in the low-frequency region.


Assuntos
Biocombustíveis , Dióxido de Silício , Eletrodos , Gasolina , Ouro , Humanos
17.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34832943

RESUMO

Cancer is one of the major maladies affecting humankind and remains one of the leading causes of death worldwide. The investigation of the biological activities of stingless bee products, especially propolis and geopropolis, has revealed promising therapeutic properties, especially in the research on new antineoplastic agents. This literature review of preclinical trials, involving biological assays of antitumor activity and identification of the chemical composition of propolis and geopropolis of stingless bee species, describes the cytotoxicity in tumor lineages (breast, lung, ovarian, liver, mouth, pharynx, larynx, colon, stomach, colorectal, cervix, kidney, prostate, melanoma, human glioblastoma, canine osteosarcoma, erythroleukemia, human chronic myelocytic leukemia, and human promyelocytic leukemia) of propolis and geopropolis of 33 species of stingless bees. The chemical composition of propolis and geopropolis was identified, indicating that these belong to the chemical classes of phenolic acids, flavonoids, coumarins, benzophenones, anthraquinones, alkaloids, terpenes, steroids, saponins, fatty acids, and carbohydrates and are possibly responsible for the cytotoxicity in tumor cells. Apoptosis was one of the main mechanisms of cytotoxicity of extracts and substances isolated from stingless bee products. Although the results found are encouraging, other preclinical studies and clinical trials are essential for the discovery of new anticancer agents.

18.
J Thorac Dis ; 13(10): 6123-6128, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34795963

RESUMO

Robotics has taken its place in thoracic surgery since the end of the 20th century. Since then, it has been developed worldwide with many different applications, such as the treatment of mediastinal tumors and lung cancer. Although, the contradictory results comparing this new technology to other minimally invasive techniques may raise some skepticism, the high quality of the instrument and images provided by the robot brings a whole new perspective for the thoracic surgeon, since the robotic platform can ally the ease of movement obtained with open technique with the advantages of the minimally invasive surgery. When it comes to the implementation of a robotic program the costs of RATS are an important issue. However, it is necessary to take into account not only the cost of the robotic platform itself but also the maintenance expenses, disposable tools, and training programs. Nevertheless, the cost of the robotic surgery is expected to decrease in the coming years and like the instrumentation, virtual reality will see improvements. Many different countries around the world have contributed with original articles for the development of the robotic thoracic surgery and in this paper, we aim at describing the global status of the robotic thoracic surgery.

19.
J Thorac Dis ; 13(Suppl 1): S8-S12, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34447587

RESUMO

Robotic thoracic surgery emerged at the beginning of the 21st century and keep presenting the continuous development of its robotic systems, tools, and associated techniques. Strong clinical results including safety and oncological outcomes have fostered the dissemination of the robotic platform all over the world. However, there are still some safety concerns, especially regarding more elaborated procedures as lung resections, during the learning curve. In consequence, training programs for surgeons and surgery residents have been proposed to put into operation a strong and complete curriculum for robotic surgery and increase safety during the learning process. Also, the implementation of the training program makes the process complete and efficient. Lung lobectomies are complex procedures especially because of pulmonary arteries and pulmonary veins dissection, which demands quite accurate skills. Consequently, it is believed that specific training of thoracic surgery residents in robotic lobectomy is capital. The ideal curriculum must include technical content and broad psychomotor training using virtual reality models and also physical and animal models. Valid evaluation methods can be used from the first skill training to daily clinical practice. At the beginning as a console surgeon, the resident must initiate gradually with small procedures and progress to more complex surgeries before performing the whole lobectomy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA