RESUMO
There is a significant unmet need for clinical reflex tests that increase the specificity of prostate-specific antigen blood testing, the longstanding but imperfect tool for prostate cancer diagnosis. Towards this endpoint, we present the results from a discovery study that identifies new prostate-specific antigen reflex markers in a large-scale patient serum cohort using differentiating technologies for deep proteomic interrogation. We detect known prostate cancer blood markers as well as novel candidates. Through bioinformatic pathway enrichment and network analysis, we reveal associations of differentially abundant proteins with cytoskeletal, metabolic, and ribosomal activities, all of which have been previously associated with prostate cancer progression. Additionally, optimized machine learning classifier analysis reveals proteomic signatures capable of detecting the disease prior to biopsy, performing on par with an accepted clinical risk calculator benchmark.
Assuntos
Biomarcadores Tumorais , Neoplasias da Próstata , Proteômica , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/sangue , Biomarcadores Tumorais/sangue , Proteômica/métodos , Espectrometria de Mobilidade Iônica/métodos , Antígeno Prostático Específico/sangue , Idoso , Aprendizado de Máquina , Pessoa de Meia-IdadeRESUMO
Patients with cancer experience a higher burden of SARS-CoV-2 infection, disease severity, complications, and mortality, than the general population. SARS-CoV-2 mRNA vaccines are highly effective in the general population; however, few data are available on their efficacy in patients with cancer. Using a prospective cohort, we assessed the seroconversion rates and anti-SARS-CoV-2 spike protein antibody titers following the first and second dose of BNT162b2 and mRNA-1273 SARS-CoV-2 vaccines in patients with cancer in US and Europe from January to April 2021. Among 131 patients, most (94%) achieved seroconversion after receipt of two vaccine doses. Seroconversion rates and antibody titers in patients with hematological malignancy were significantly lower than those with solid tumors. None of the patients with history of anti-CD-20 antibody in the 6 months before vaccination developed antibody response. Antibody titers were highest for clinical surveillance or endocrine therapy groups and lowest for cytotoxic chemotherapy or monoclonal antibody groups.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/prevenção & controle , Neoplasias/imunologia , SARS-CoV-2/imunologia , Vacinas Sintéticas/imunologia , Idoso , Feminino , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/terapia , Soroconversão , Vacinas de mRNARESUMO
PURPOSE: The rs17632542 single nucleotide polymorphism (SNP) results in lower serum prostate specific antigen (PSA) levels which may further mitigate against its clinical utility as a prostate cancer biomarker. Post-digital rectal exam (post-DRE) urine is a minimally invasive fluid that is currently utilized in prostate cancer diagnosis. To detect and quantitate the variant protein in urine. EXPERIMENTAL DESIGN: Fifty-three post-DRE urines from rs17632542 genotyped individuals processed and analyzed by liquid chromatography/mass spectrometry (LC-MS) in a double-blinded randomized study. The ability to distinguish between homozygous wild-type, heterozygous, or homozygous variant is examined before unblinding. RESULTS: Stable-isotope labeled peptides are used in the detection and quantitation of three peptides of interest in each sample using parallel reaction monitoring (PRM). Using these data, groupings are predicted using hierarchical clustering in R. Accuracy of the predictions show 100% concordance across the 53 samples, including individuals homozygous and heterozygous for the SNP. CONCLUSIONS AND CLINICAL RELEVANCE: The study demonstrates that MS based peptide variant quantitation in urine could be useful in determining patient genotype expression. This assay provides a tool to evaluate the utility of PSA variant (rs17632542) in parallel with current and forthcoming urine biomarker panels.