Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cancer Lett ; : 217042, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908543

RESUMO

Although survival from breast cancer has dramatically increased, many will develop recurrent, metastatic disease. Unfortunately, survival for this stage of disease remains very low. Activating the immune system has incredible promise since it has the potential to be curative. However, immune checkpoint blockade (ICB) which works through T cells has been largely disappointing for metastatic breast cancer. One reason for this is a suppressive myeloid immune compartment that is unaffected by ICB. Cholesterol metabolism and proteins involved in cholesterol homeostasis play important regulatory roles in myeloid cells. Here, we demonstrate that NR0B2, a nuclear receptor involved in negative feedback of cholesterol metabolism, works in several myeloid cell types to impair subsequent expansion of regulatory T cells (Tregs); Tregs being a subset known to be highly immune suppressive and associated with poor therapeutic response. Within myeloid cells, NR0B2 serves to decrease many aspects of the inflammasome, ultimately resulting in decreased IL1ß; IL1ß driving Treg expansion. Importantly, mice lacking NR0B2 exhibit accelerated tumor growth. Thus, NR0B2 represents an important node in myeloid cells dictating ensuing Treg expansion and tumor growth, thereby representing a novel therapeutic target to re-educate these cells, having impact across different solid tumor types. Indeed, a paper co-published in this issue demonstrates the therapeutic utility of targeting NR0B2.

2.
bioRxiv ; 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37645737

RESUMO

Immune checkpoint blockade (ICB) has revolutionized cancer therapy but has had limited utility in several solid tumors such as breast cancer, a major cause of cancer-related mortality in women. Therefore, there is considerable interest in alternate strategies to promote an anti-cancer immune response. We demonstrate that NR0B2, a protein involved in cholesterol homeostasis, functions within myeloid immune cells to modulate the NLRP3 inflammasome and reduce the expansion of immune-suppressive regulatory T cells (Treg). Loss of NR0B2 increased mammary tumor growth and metastasis. Small molecule agonists, including one developed here, reduced Treg expansion, reduced metastatic growth and improved the efficacy of ICB. This work identifies NR0B2 as a target to re-educate myeloid immune cells providing proof-of-principle that this cholesterol-homeostasis axis may have utility in enhancing ICB.

3.
ACS Med Chem Lett ; 14(3): 305-311, 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36923918

RESUMO

Ibrutinib is a covalent BTK inhibitor that is approved for several indications in oncology. Ibrutinib possesses significant off-target activities toward many kinases, often leading to adverse events in patients. While there have been robust medicinal chemistry efforts leading to more selective second-generation BTK inhibitors, there remains a need for new strategies to rapidly improve the selectivity of kinase inhibitors. An analysis of PDB data revealed that ibrutinib binds BTK in dihedral conformations that are orthogonal of ibrutinib's predicted low energy conformational range. Synthesis of a series of analogues with ground state conformations shifted toward orthogonality led to the discovery of an analogue with two incorporated ortho-methyl groups that possessed markedly increased BTK selectivity. This work suggests that conformational control about a prospective atropisomeric axis represents a strategy to rapidly program a compound's selectivity toward a given target.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA