Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38732236

RESUMO

The use of probiotic lactobacilli has been proposed as a strategy to mitigate damage associated with exposure to toxic metals. Their protective effect against cationic metal ions, such as those of mercury or lead, is believed to stem from their chelating and accumulating potential. However, their retention of anionic toxic metalloids, such as inorganic arsenic, is generally low. Through the construction of mutants in phosphate transporter genes (pst) in Lactiplantibacillus plantarum and Lacticaseibacillus paracasei strains, coupled with arsenate [As(V)] uptake and toxicity assays, we determined that the incorporation of As(V), which structurally resembles phosphate, is likely facilitated by phosphate transporters. Surprisingly, inactivation in Lc. paracasei of PhoP, the transcriptional regulator of the two-component system PhoPR, a signal transducer involved in phosphate sensing, led to an increased resistance to arsenite [As(III)]. In comparison to the wild type, the phoP strain exhibited no differences in the ability to retain As(III), and there were no observed changes in the oxidation of As(III) to the less toxic As(V). These results reinforce the idea that specific transport, and not unspecific cell retention, plays a role in As(V) biosorption by lactobacilli, while they reveal an unexpected phenotype for the lack of the pleiotropic regulator PhoP.


Assuntos
Arsênio , Fosfatos , Fosfatos/metabolismo , Arsênio/toxicidade , Arsênio/metabolismo , Lactobacillus/metabolismo , Lactobacillus/efeitos dos fármacos , Lactobacillus/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Transporte de Fosfato/metabolismo , Proteínas de Transporte de Fosfato/genética , Arseniatos/metabolismo , Arseniatos/toxicidade
2.
Appl Environ Microbiol ; 90(5): e0229023, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38619267

RESUMO

The linear polymer polyphosphate (poly-P) is present across all three domains of life and serves diverse physiological functions. The enzyme polyphosphate kinase (Ppk) is responsible for poly-P synthesis, whereas poly-P degradation is carried out by the enzyme exopolyphosphatase (Ppx). In many Lactobacillaceae, the Ppk-encoding gene (ppk) is found clustered together with two genes encoding putative exopolyphosphatases (ppx1 and ppx2) each having different domain compositions, with the gene order ppx1-ppk-ppx2. However, the specific function of these ppx genes remains unexplored. An in-frame deletion of ppx1 in Lacticaseibacillus paracasei BL23 resulted in bacteria unable to accumulate poly-P, whereas the disruption of ppx2 did not affect poly-P synthesis. The expression of ppk was not altered in the Δppx1 strain, and poly-P synthesis in this strain was only restored by expressing ppx1 in trans. Moreover, no poly-P synthesis was observed when ppk was expressed from a plasmid in the Δppx1 strain. Purified Ppx2 exhibited in vitro exopolyphosphatase activity, whereas no in vitro enzymatic activity could be demonstrated for Ppx1. This observation corresponds with the absence in Ppx1 of conserved motifs essential for catalysis found in characterized exopolyphosphatases. Furthermore, assays with purified Ppk and Ppx1 evidenced that Ppx1 enhanced Ppk activity. These results demonstrate that Ppx1 is essential for poly-P synthesis in Lc. paracasei and have unveiled, for the first time, an unexpected role of Ppx1 exopolyphosphatase in poly-P synthesis.IMPORTANCEPoly-P is a pivotal molecular player in bacteria, participating in a diverse array of processes ranging from stress resilience to pathogenesis while also serving as a functional component in probiotic bacteria. The synthesis of poly-P is tightly regulated, but the underlying mechanisms remain incompletely elucidated. Our study sheds light on the distinctive role played by the two exopolyphosphatases (Ppx) found in the Lactobacillaceae bacterial group, of relevance in food and health. This particular group is noteworthy for possessing two Ppx enzymes, supposedly involved in poly-P degradation. Remarkably, our investigation uncovers an unprecedented function of Ppx1 in Lacticaseibacillus paracasei, where its absence leads to the total cessation of poly-P synthesis, paralleling the impact observed upon eliminating the poly-P forming enzyme, poly-P kinase. Unlike the anticipated role as a conventional exopolyphosphatase, Ppx1 demonstrates an unexpected function. Our results added a layer of complexity to our understanding of poly-P dynamics in bacteria.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Bactérias , Polifosfatos , Hidrolases Anidrido Ácido/metabolismo , Hidrolases Anidrido Ácido/genética , Polifosfatos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética
3.
Sci Rep ; 14(1): 3319, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336830

RESUMO

The PsdRSAB and ApsRSAB detoxification modules, together with the antimicrobial peptides (AMPs)-resistance determinants Dlt system and MprF protein, play major roles in the response to AMPs in Lacticaseibacillus paracasei BL23. Sensitivity assays with a collection of mutants showed that the PsdAB ABC transporter and the Dlt system are the main subtilin resistance determinants. Quantification of the transcriptional response to subtilin indicate that this response is exclusively regulated by the two paralogous systems PsdRSAB and ApsRSAB. Remarkably, a cross-regulation of the derAB, mprF and dlt-operon genes-usually under control of ApsR-by PsdR in response to subtilin was unveiled. The high similarity of the predicted structures of both response regulators (RR), and of the RR-binding sites support this possibility, which we experimentally verified by protein-DNA binding studies. ApsR-P shows a preferential binding in the order PderA > Pdlt > PmprF > PpsdA. However, PsdR-P bound with similar apparent affinity constants to the four promoters. This supports the cross-regulation of derAB, mprF and the dlt-operon by PsdR. The possibility of cross-regulation at the level of RR-promoter interaction allows some regulatory overlap with two RRs controlling the expression of systems involved in maintenance of critical cell membrane functions in response to lantibiotics.


Assuntos
Bacteriocinas , Lacticaseibacillus paracasei , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Regiões Promotoras Genéticas , Óperon , Regulação Bacteriana da Expressão Gênica
4.
Pest Manag Sci ; 80(3): 1182-1192, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37884685

RESUMO

BACKGROUND: Centaurea diluta Aiton (North African knapweed) is a major weed concern in Spain as a result of the limited herbicides capable of controlling it, and the limited knowledge of its biology hinders the development of integrated weed management strategies. RESULTS: The current study presents results from two experiments that aimed to: (i) determine the effect of seed burial on seedling emergence; and (ii) model its phenology progression using sigmoidal (SRM) and artificial neural network models (ANN) based on different cohort emergence times. In the first experiment, burial at 2 cm and 5 cm decreased C. diluta emergence by 54% and 90%, respectively, compared to the emergence at 0 cm. In the second experiment, without crop-weed competition conditions, the emergence delay led to reductions in leaf number, rosette diameter, plant height and dry biomass by 63%, 50%, 59% and 93%, respectively. Seed production per plant exceeded 21 469. According to the growth model, leaf number was the most consistent morphological trait and critical for timing weed control actions, so it was used to compare SRMs and ANNs. On average, ANNs increased the precision in 5.72% (± 2.4 leaves) compared to SRMs. This slight performance of ANNs may be valuable for controlling C. diluta because control methods must be applied at the 4-leaf stage to achieve good efficacy. CONCLUSION: Seed burial at 5 cm depth is an effective method reducing C. diluta emergence. ANNs accurately predicted the leaf number employing environmental variables can help increase the efficiency of C. diluta control actions and reduce the risk of escapes. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Germinação , Herbicidas , Humanos , Controle de Plantas Daninhas/métodos , Herbicidas/farmacologia , Plântula , Biomassa
5.
Sci Rep ; 13(1): 11076, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422465

RESUMO

Polyphosphate (poly-P) biosynthesis in bacteria has been linked to many physiological processes and has been characterized as an interesting functional molecule involved in intestinal homeostasis. We determined the capacity for poly-P production of 18 probiotic strains mainly belonging to Bifidobacterium and former Lactobacillus genera, showing that poly-P synthesis varied widely between strains and is dependent on the availability of phosphate and the growth phase. Bifidobacteria were especially capable of poly-P synthesis and poly-P kinase (ppk) genes were identified in their genomes together with a repertoire of genes involved in phosphate transport and metabolism. In Bifidobacterium longum KABP042, the strain we found with highest poly-P production, variations in ppk expression were linked to growth conditions and presence of phosphate in the medium. Moreover, the strain produced poly-P in presence of breast milk and lacto-N-tetraose increased the amount of poly-P synthesized. Compared to KABP042 supernatants low in poly-P, exposure of Caco-2 cells to KABP042 supernatants rich in poly-P resulted in decreased epithelial permeability and increased barrier resistance, induction of epithelial protecting factors such as HSP27 and enhanced expression of tight junction protein genes. These results highlight the role of bifidobacteria-derived poly-P as a strain-dependent functional factor acting on epithelial integrity.


Assuntos
Bifidobacterium longum , Probióticos , Feminino , Humanos , Bifidobacterium longum/metabolismo , Polifosfatos/metabolismo , Células CACO-2 , Intestinos/microbiologia , Bifidobacterium
6.
Diagnostics (Basel) ; 11(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33799960

RESUMO

Spontaneous swallowing contributes to airway protection and depends on the activation of brainstem reflex circuits in the central pattern generator (CPG). We studied the effect of age and gender on spontaneous swallowing frequency (SSF) in healthy volunteers and assessed basal SSF and TRPV1 stimulation effect on SSF in patients with post-stroke oropharyngeal dysphagia (OD). The effect of age and gender on SSF was examined on 141 healthy adult volunteers (HV) divided into three groups: GI-18-39 yr, GII-40-59 yr, and GIII->60 yr. OD was assessed by the Volume-Viscosity Swallowing Test (VVST). The effect of sensory stimulation with capsaicin 10-5 M (TRPV1 agonist) was evaluated in 17 patients with post-stroke OD, using the SSF. SSF was recorded in all participants during 10 min using surface electromyography (sEMG) of the suprahyoid muscles and an omnidirectional accelerometer placed over the cricothyroid cartilage. SSF was significantly reduced in GII (0.73 ± 0.50 swallows/min; p = 0.0385) and GIII (0.50 ± 0.31 swallows/min; p < 0.0001) compared to GI (1.03 ± 0.62 swallows/min), and there was a moderate significant correlation between age and SFF (r = -0.3810; p < 0.0001). No effect of gender on SSF was observed. Capsaicin caused a strong and significant increase in SSF after the TRPV1 stimulation when comparing to basal condition (pre-capsaicin: 0.41 ± 0.32 swallows/min vs post-capsaicin: 0.81 ± 0.51 swallow/min; p = 0.0003). OD in patients with post-stroke OD and acute stimulation with TRPV1 agonists caused a significant increase in SSF, further suggesting the potential role of pharmacological stimulation of sensory pathways as a therapeutic strategy for CPG activation in patients with OD.

7.
Food Res Int ; 136: 109534, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32846595

RESUMO

The present study aims to evaluate the antibacterial activity and biological properties of two traditional Saharian plants (Cymbopogon schoenanthus and Ziziphus lotus). The plant extracts were obtained by using a different combination of extraction methods (conventional vs. ultrasound-assisted) and solvents (water vs. ethanol:water (50:50, v/v)). The antioxidant profile, anti-inflammatory activity and impact on bacterial growth (foodborne and probiotic bacteria) of the obtained extracts were assessed. The plant species showed the hierarchically more important role in determining the biological properties of the extracts, followed by extraction solvent and extraction conditions. Conventional Z. lotus hydroethanolic extracts showed the highest total phenolic content (20.4 mg GAE/g), while Z. lotus ethanol extracts from ultrasound-assisted process presented the highest content of carotenoids (0.15 mg/g). In addition, ultrasound-assisted Z. lotus hydroethanolic extracts presented the highest in vitro radical scavenging activity, being 7.93 mmol Trolox/g. Multivariate analysis statistics (PCA) showed that both the extraction methodology and the solvent used strongly affected the bacterial growth. Z. lotus mainly decreased the growth rate of S. aureus and L. innocua. Interestingly, the aqueous extracts of this plant as well as those from C. schoenanthus, obtained by conventional extraction, significantly increased the growth rate and the maximal optical density of L. casei. Aqueous extracts of both Z. lotus and C. schoenanthus slightly influenced the growth of Bifidobacterium. Overall, the extracts of these plants showed selective activities with respect to pathogens and probiotic bacteria and may provide an advantage both in terms of antimicrobial and prebiotic activity.


Assuntos
Cymbopogon , Lotus , Ziziphus , Antioxidantes/farmacologia , Staphylococcus aureus
8.
Sci Rep ; 10(1): 11845, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678209

RESUMO

Human milk oligosaccharides (HMOs) are a mixture of structurally diverse carbohydrates that contribute to shape a healthy gut microbiota composition. The great diversity of the HMOs structures does not allow the attribution of specific prebiotic characteristics to single milk oligosaccharides. We analyze here the utilization of four disaccharides, lacto-N-biose (LNB), galacto-N-biose (GNB), fucosyl-α1,3-GlcNAc (3FN) and fucosyl-α1,6-GlcNAc (6FN), that form part of HMOs and glycoprotein structures, by the infant fecal microbiota. LNB significantly increased the total levels of bifidobacteria and the species Bifidobacterium breve and Bifidobacterium bifidum. The Lactobacillus genus levels were increased by 3FN fermentation and B. breve by GNB and 3FN. There was a significant reduction of Blautia coccoides group with LNB and 3FN. In addition, 6FN significantly reduced the levels of Enterobacteriaceae family members. Significantly higher concentrations of lactate, formate and acetate were produced in cultures containing either LNB or GNB in comparison with control cultures. Additionally, after fermentation of the oligosaccharides by the fecal microbiota, several Bifidobacterium strains were isolated and identified. The results presented here indicated that each, LNB, GNB and 3FN disaccharide, might have a specific beneficial effect in the infant gut microbiota and they are potential prebiotics for application in infant foods.


Assuntos
Acetilglucosamina/análogos & derivados , Acetilglucosamina/isolamento & purificação , Dissacaridases/isolamento & purificação , Dissacarídeos/isolamento & purificação , Leite Humano/química , Prebióticos/análise , Acetatos/metabolismo , Bifidobacterium bifidum/classificação , Bifidobacterium bifidum/genética , Bifidobacterium bifidum/isolamento & purificação , Bifidobacterium bifidum/metabolismo , Bifidobacterium breve/classificação , Bifidobacterium breve/genética , Bifidobacterium breve/isolamento & purificação , Bifidobacterium breve/metabolismo , Clostridiales/classificação , Clostridiales/genética , Clostridiales/isolamento & purificação , Clostridiales/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Fezes/microbiologia , Formiatos/metabolismo , Microbioma Gastrointestinal/fisiologia , Humanos , Lactente , Ácido Láctico/metabolismo , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Lactobacillus/metabolismo
9.
Food Res Int ; 134: 109242, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32517919

RESUMO

Mediterranean herbs, specially thyme and rosemary, are important ingredients in food preparation and more recently have been studied as natural sources of bioactive compounds. This study aimed to study the effect of matrix (thyme vs. rosemary), and extraction protocol (conventional extraction vs. ultrasound assisted extraction) solvent composition (water vs. 50:50 ethanol:water solution) on the extraction of high value compounds (phenolic compounds, flavonoids and carotenoids) and also explore the antioxidant, antimicrobial (Listeria innocua, Staphylococcus aureus, and Salmonella enterica), probiotic (Lactobacillus casei and Bifidobacterium lactis), and anti-inflammatory activities. The phenolic, flavonoid and carotenoid content of extracts was greatly influenced by extraction conditions wherein the ultrasound pre-treatment improved the extraction of carotenoids but induced the opposite effect for polyphenols and flavonoids in both herbs. Only the aqueous extract of thyme obtained from ultrasound pre-treatment was the only extract that inhibited the growth of potentially pathogenic bacteria, stimulated the probiotic bacteria and achieved high anti-inflammatory and antioxidant activity. Moreover, this extract also was rich on phenolic compounds (such as p-coumaric acid 4-O-glucoside, kaempferol 3-O-rutinoside, feruloyl glucose, and 4-vinylguaiacol) and carotenoids. Therefore, ultrasound extraction of bioactive compounds with water as solvent could be explored in food and pharmaceutical applications.


Assuntos
Rosmarinus , Thymus (Planta) , Listeria , Extratos Vegetais/farmacologia , Solventes
10.
Appl Environ Microbiol ; 86(14)2020 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-32414796

RESUMO

Bce-like systems mediate resistance against antimicrobial peptides in Firmicutes bacteria. Lactobacillus casei BL23 encodes an "orphan" ABC transporter that, based on homology to BceAB-like systems, was proposed to contribute to antimicrobial peptide resistance. A mutant lacking the permease subunit was tested for sensitivity against a collection of peptides derived from bacteria, fungi, insects, and humans. Our results show that the transporter specifically conferred resistance against insect-derived cysteine-stabilized αß defensins, and it was therefore renamed DerAB for defensin resistance ABC transporter. Surprisingly, cells lacking DerAB showed a marked increase in resistance against the lantibiotic nisin. This could be explained by significantly increased expression of the antimicrobial peptide resistance determinants regulated by the Bce-like systems PsdRSAB (formerly module 09) and ApsRSAB (formerly module 12). Bacterial two-hybrid studies in Escherichia coli showed that DerB could interact with proteins of the sensory complex in the Psd resistance system. We therefore propose that interaction of DerAB with this complex in the cell creates signaling interference and reduces the cell's potential to mount an effective nisin resistance response. In the absence of DerB, this negative interference is relieved, leading to the observed hyperactivation of the Psd module and thus increased resistance to nisin. Our results unravel the function of a previously uncharacterized Bce-like orphan resistance transporter with pleiotropic biological effects on the cell.IMPORTANCE Antimicrobial peptides (AMPs) play an important role in suppressing the growth of microorganisms. They can be produced by bacteria themselves-to inhibit competitors-but are also widely distributed in higher eukaryotes, including insects and mammals, where they form an important component of innate immunity. In low-GC-content Gram-positive bacteria, BceAB-like transporters play a crucial role in AMP resistance but have so far been primarily associated with interbacterial competition. Here, we show that the orphan transporter DerAB from the lactic acid bacterium Lactobacillus casei is crucial for high-level resistance against insect-derived AMPs. It therefore represents an important mechanism for interkingdom defense. Furthermore, our results support a signaling interference from DerAB on the PsdRSAB module that might prevent the activation of a full nisin response. The Bce modules from L. casei BL23 illustrate a biological paradox in which the intrinsic nisin detoxification potential only arises in the absence of a defensin-specific ABC transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antibiose , Proteínas de Bactérias/genética , Defensinas/química , Proteínas de Insetos/química , Lacticaseibacillus casei/genética , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lacticaseibacillus casei/metabolismo
11.
Molecules ; 25(7)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290312

RESUMO

The paper presents experimental results concerning the ultrasonically-assisted extraction of bioactive compounds from Erodium glaucophyllum roots. A comparison with conventional methodology is presented, and thereby the phytochemical composition and the antioxidant and anti-inflammatory activities of extracts are evaluated. The phenolic profile of Erodium extracts was analyzed by TOF-LC-MS-MS. The identification of phenolic compounds revealed that the major component was (+)-gallocatechin in the aqueous extracts obtained for the different extraction methodologies. The highest quantity of phenolic compounds and antioxidant capacity was found in the hydroethanolic extract obtained by conventional extraction (29.22-25.50 mg GAE/g DM; 21.174 mM Trolox equivalent). The highest content of carotenoids, varying from 0.035 to 0.114 mg/g dry matter, was reached by ultrasonic-assisted extraction. Furthermore, Erodium extracts showed a potent inhibition of the inflammatory reaction by means of the inhibition of tumor necrosis factor-alpha (TNF-α). The extracts obtained when ultrasound extraction was combined with ethanol:water (50:50, v/v) presented the greatest inhibition (92%).


Assuntos
Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Raízes de Plantas/química , Traqueófitas/química , Ondas Ultrassônicas , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Etanol/química , Fenóis/química , Extratos Vegetais/farmacologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
12.
Molecules ; 25(7)2020 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-32283592

RESUMO

Mediterranean plants, such as fig and olive leaves, are well-known to exert beneficial effects in humans because of the presence of a wide range of bioactive compounds. However, scarce information regarding the impact of extraction methods, such as ultrasound and types of solvents, on their profile of antioxidant and anti-inflammatory compounds is provided. In addition, no information is available on the effects of extraction methods and solvents on the inhibition of pathogenic bacteria or promoting probiotic growth. In this scenario, this study was aimed to study the effects of ultrasound-assisted extraction (UAE) and solvent on the phenolic profile (Triple TOF-LC-MS/MS), antioxidant and anti-inflammatory compounds of olive and fig leaves. Results showed that UAE extracted more carotenoids compared to conventional extraction, while the conventional extraction impacted on higher flavonoids (olive leaves) and total phenolics (fig leaves). The antioxidant capacity of aqueous extract of fig leaves was three times higher than the extract obtained with ethanol for conventional extraction and four times higher for UAE. In general terms, hydroethanolic extracts presented the highest bacterial growth inhibition, and showed the highest anti-inflammatory activity. In conclusion, these side streams can be used as sources of bioactive compounds for further development of high-added-value products.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/química , Antioxidantes/isolamento & purificação , Ficus/química , Olea/química , Fenóis/química , Fenóis/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Cromatografia Líquida , Espectrometria de Massas , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Folhas de Planta/química , Espécies Reativas de Oxigênio/metabolismo , Solventes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ondas Ultrassônicas
13.
Food Res Int ; 126: 108659, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31732027

RESUMO

Erodium spp. is a genus that can be found in all continents that has been traditionally used in folk medicine to treat many diseases such as hemorrhage, dermatological disorders, indigestion, and inflammatory diseases. Moreover, Erodium leaves have been used for the preparation of salads, omelets, sandwiches, sauces and soups, among other food products. The objective of this review was to show the recent and relevant studies about extraction of bioactive compounds, the phytochemical characterization, the potential biological activities and toxicological evidence reported in both in vitro and in vivo studies from Erodium spp. In addition, the use of Erodium spp. as natural compounds against the development of diseases were also showed. This review highlights the traditional use of Erodium species in several countries as a therapeutic agent to treat several diseases (such as constipation, dermatological disorders, diabetes, indigestion, urinary inflammations, and as carminative agent), the factors influencing the extraction of bioactive compounds (mainly species and solvent composition on phenolic compounds) and phytochemical profile (presence of essential oils and alkaloids), the scientific evidence about its anti-inflammatory, antimicrobial (against both spoilage and pathogenic microorganisms), antiviral and other health-related activities (anti-protozoal and anti-viral activity) as well as the toxicological evidence. Erodium spp. is a relevant source of compounds with antioxidant, antimicrobial, and biological activity, which support its potential exploration in pharmacological and food area. Major efforts are necessary to advance the knowledge about Erodium genus regarding the relation between traditional use and scientific evidence, optimization of extraction conditions, the influence on biological mechanisms at animal and clinical levels, and bioaccessibility and bioavailability of bioactive compounds.


Assuntos
Etnofarmacologia , Geraniaceae , Compostos Fitoquímicos , Anti-Infecciosos , Anti-Inflamatórios , Antioxidantes , Antivirais , Humanos , Medicina Tradicional , Óleos Voláteis , Compostos Fitoquímicos/análise , Fitoterapia , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Folhas de Planta/química
14.
BMC Pediatr ; 19(1): 140, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053102

RESUMO

BACKGROUND: Early microbial colonization is a relevant aspect in human health. Altered microbial colonization patterns have been linked to an increased risk of non-communicable diseases (NCDs). Advances in understanding host-microbe interactions highlight the pivotal role of maternal microbiota on infant health programming. This birth cohort is aimed to characterize the maternal microbes transferred to neonates during the first 1000 days of life, as well as to identify the potential host and environmental factors, such as gestational age, mode of delivery, maternal/infant diet, and exposure to antibiotics, which affect early microbial colonization. METHODS: MAMI is a prospective mother-infant birth cohort in the Spanish-Mediterranean area. Mothers were enrolled at the end of pregnancy and families were follow-up during the first years of life. Maternal-infant biological samples were collected at several time points from birth to 24 months of life. Clinical and anthropometric characteristics and dietary information is available. Specific qPCR and 16S rRNA gene sequencing as well as short chain fatty acid (SCFAs) profile would be obtained. Multivariable models will be used to identy associations between microbiota and clinical and anthropometric data controlling for confounders. MAMI would contribute to a better understanding of the interaction between diet, microbiota and host response in early life health programming, enabling new applications in the field of personalized nutrition and medicine. TRIAL REGISTRATION: The study is registered on the ClinicalTrial.gov platform NCT03552939. (June 12, 2018).


Assuntos
Aleitamento Materno , Dieta , Saúde do Lactente , Monitorização Fisiológica/métodos , Adulto , Fatores Etários , Desenvolvimento Infantil , Estudos de Coortes , DNA/genética , Feminino , Microbioma Gastrointestinal , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Masculino , Relações Mãe-Filho , Análise Multivariada , Reação em Cadeia da Polimerase/métodos , Estudos Prospectivos , Fatores Sexuais , Espanha
15.
Front Microbiol ; 9: 1944, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245671

RESUMO

The synthesis of the inorganic polymer polyphosphate (poly-P) in bacteria has been linked to stress survival and to the capacity of some strains to sequester heavy metals. In addition, synthesis of poly-P by certain strains of probiotic lactobacilli has been evidenced as a probiotic mechanism due to the homeostatic properties of this compound at the intestinal epithelium. We analyzed the link between poly-P synthesis, stress response, and mercury toxicity/accumulation by comparing wild-type strains of Lactobacillus and their corresponding mutants devoid of poly-P synthesis capacity (defective in the poly-P kinase, ppk, gene). Results showed that resistance to salt (NaCl) and acidic (pH 4) stresses upon ppk mutation was affected in Lactobacillus casei, while no effect was observed in two different Lactobacillus plantarum strains. Inorganic [Hg(II)] and organic (CH3Hg) mercury toxicity was generally increased upon ppk mutation, but no influence was seen on the capacity to retain both mercurial forms by the bacteria. Notwithstanding, the culture supernatants of ppk-defective L. plantarum strains possessed a diminished capacity to induce HSP27 expression, a marker for cell protection, in cultured Caco-2 cells compared to wild-type strains. In summary, our results illustrate that the role of poly-P in stress tolerance can vary between strains and they reinforce the idea of probiotic-derived poly-P as a molecule that modulates host-signaling pathways. They also question the relevance of this polymer to the capacity to retain mercury of probiotics.

16.
Front Microbiol ; 9: 1376, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997594

RESUMO

Preterm microbial colonization is affected by gestational age, antibiotic treatment, type of birth, but also by type of feeding. Breast milk has been acknowledged as the gold standard for human nutrition. In preterm infants breast milk has been associated with improved growth and cognitive development and a reduced risk of necrotizing enterocolitis and late onset sepsis. In the absence of their mother's own milk (MOM), pasteurized donor human milk (DHM) could be the best available alternative due to its similarity to the former. However, little is known about the effect of DHM upon preterm microbiota and potential biological implications. Our objective was to determine the impact of DHM upon preterm gut microbiota admitted in a referral neonatal intensive care unit (NICU). A prospective observational cohort study in NICU of 69 neonates <32 weeks of gestation and with a birth weight ≤1,500 g was conducted. Neonates were classified in three groups according to feeding practices consisting in their MOM, DHM, or formula. Fecal samples were collected when full enteral feeding (defined as ≥150 cc/kg/day) was achieved. Gut microbiota composition was analyzed by 16S rRNA gene sequencing. Despite the higher variability, no differences in microbial diversity and richness were found, although feeding type significantly influenced the preterm microbiota composition and predictive functional profiles. Preterm infants fed MOM showed a significant greater presence of Bifidobacteriaceae and lower of Staphylococcaceae, Clostridiaceae, and Pasteurellaceae compared to preterm fed DHM. Formula fed microbial profile was different to those observed in preterm fed MOM. Remarkably, preterm infants fed DHM showed closer microbial profiles to preterm fed their MOM. Inferred metagenomic analyses showed higher presence of Bifidobacterium genus in mother's milk group was related to enrichment in the Glycan biosynthesis and metabolism pathway that was not identified in the DHM or in the formula fed groups. In conclusion, DHM favors an intestinal microbiome more similar to MOM than formula despite the differences between MOM and DHM. This may have potential beneficial long-term effects on intestinal functionality, immune system, and metabolic activities.

17.
Front Microbiol ; 9: 890, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867803

RESUMO

There is increasing evidence for the interaction between gut microbiome, diet, and health. It is known that dysbiosis is related to disease and that most of the times this imbalances in gut microbial populations can be promoted through diet. Western dietary habits, which are characterized by high intakes of calories, animal proteins, saturated fats, and simple sugars have been linked with higher risk of obesity, diabetes, cancer, and cardiovascular disease. However, little is known about the impact of dietary patterns, dietary components, and nutrients on gut microbiota in healthy people. The aim of our study is to determine the effect of nutrient compounds as well as adherence to a dietary pattern, as the Mediterranean diet (MD) on the gut microbiome of healthy adults. Consequently, gut microbiota composition in healthy individuals, may be used as a potential biomarker to identify nutritional habits as well as risk of disease related to these habits. Dietary information from healthy volunteers (n = 27) was recorded using the Food Frequency Questionnaire. Adherence to the MD was measured using the PREDIMED test. Microbiota composition and diversity were obtained by 16S rRNA gene sequencing and specific quantitative polymerase chain reaction. Microbial metabolic activity was determined by quantification of short chain fatty acids (SCFA) on high performance liquid chromatography (HPLC). The results indicated that a higher ratio of Firmicutes-Bacteroidetes was related to lower adherence to the MD, and greater presence of Bacteroidetes was associated with lower animal protein intake. High consumption of animal protein, saturated fats, and sugars affected gut microbiota diversity. A significant higher presence of Christensenellaceae was found in normal-weight individuals compared to those who were overweight. This was also the case in volunteers with greater adherence to the MD compared to those with lower adherence. Butyricimonas, Desulfovibrio, and Oscillospira genera were associated with a BMI <25 and the genus Catenibacterium with a higher PREDIMED score. Higher bifidobacterial counts, and higher total SCFA were related to greater consumption of plant-based nutrients, such as vegetable proteins and polysaccharides. Better adherence to the MD was associated with significantly higher levels of total SCFA. Consequently, diet and specific dietary components could affect microbiota composition, diversity, and activity, which may have an effect on host metabolism by increasing the risk of Western diseases.

19.
J Sci Food Agric ; 97(15): 5107-5113, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28423187

RESUMO

BACKGROUND: Metal sequestration by bacteria has been proposed as a strategy to counteract metal contamination in foodstuffs. Lactobacilli can interact with metals, although studies with important foodborne metals such as inorganic [Hg(II)] or organic (CH3 Hg) mercury are lacking. Lactobacilli were evaluated for their potential to bind these contaminants and the nature of the interaction was assessed by the use of metal competitors, chemical and enzymatical treatments, and mutants affected in the cell wall structure. RESULTS: Lactobacillus strains efficiently bound Hg(II) and CH3 Hg. Mercury binding by Lactobacillus casei BL23 was independent of cell viability. In BL23, both forms of mercury were cell wall bound. Their interaction was not inhibited by cations and it was resistant to chelating agents and protein digestion. Lactobacillus casei mutants affected in genes involved in the modulation of the negative charge of the cell wall anionic polymer lipoteichoic acid showed increased mercury biosorption. In these mutants, mercury toxicity was enhanced compared to wild-type bacteria. These data suggest that lipoteichoic acid itself or the physicochemical characteristics that it confers to the cell wall play a major role in mercury complexation. CONCLUSION: This is the first example of the biosorption of Hg(II) and CH3 Hg in lactobacilli and it represents a first step towards their possible use as agents for diminishing mercury bioaccessibility from food at the gastrointestinal tract. © 2017 Society of Chemical Industry.


Assuntos
Lacticaseibacillus casei/metabolismo , Mercúrio/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/crescimento & desenvolvimento , Lipopolissacarídeos/metabolismo , Ácidos Teicoicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA