Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Children (Basel) ; 10(11)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38002888

RESUMO

The benefits of maternal physical activity during pregnancy are well documented, but long-term effects on the child have been less studied. Therefore, we conducted a pilot follow-up study of a lifestyle intervention during pregnancy that aimed to investigate whether exercise (endurance and strength training) during pregnancy affects motor performance and body composition of children up to 9 years of age, as well as possible influencing factors like brain-derived neurotrophic factor (BDNF) and lifestyle. Eleven mother-child pairs from the intervention and eight mother-child pairs from the control group were included. From birth up to 9 years of age, no differences in body mass index (BMI) or body mass index standard deviation scores (BMI-SDS) were found between the groups. Lifestyle intervention was one of the influencing factors for children's cardiorespiratory endurance capacity and coordination. Moreover, maternal BDNF in the last trimester was significantly associated with running performance, which may be due to better neuronal development. This is the first study evaluating the effects of a lifestyle intervention during pregnancy on the motor performance 9 years after birth. Children's participation in exercise programs over the past 9 years was not continuously recorded and therefore not included in the analysis. Even a cautious interpretation of these results indicates that a healthy lifestyle during pregnancy is essential in promoting child health. Larger studies and randomized control trials are necessary to confirm our results, especially those pertaining to the role of BDNF.

2.
J Mol Cell Biol ; 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891014

RESUMO

The novel coronavirus pandemic, first reported in December 2019, was caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection leads to a strong immune response and activation of antigen-presenting cells, which can elicit acute respiratory distress syndrome (ARDS) characterized by the rapid onset of widespread inflammation, the so-called cytokine storm. In response to viral infections, monocytes are recruited into the lung and subsequently differentiate into dendritic cells (DCs). DCs are critical players in the development of the acute lung inflammation that causes ARDS. Here we focus on the interaction of a specific SARS-CoV-2 open reading frame protein, ORF8, with DCs. We show that ORF8 binds to DCs, causes a pre-maturation of differentiating DCs, and induces the secretion of multiple proinflammatory cytokines by these cells. In addition, we identified DC-SIGN as a possible interaction partner of ORF8 on DCs. Blockade of ORF8 leads to reduced production of IL-1ß, IL-6, IL-12p70, TNF-α, MCP-1 (also named CCL2), and IL-10 by DCs. Therefore, a neutralizing antibody blocking the ORF8-mediated cytokine and chemokine response could be an improved therapeutical strategy against severe SARS-CoV-2.

3.
Int J Mol Sci ; 24(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36768831

RESUMO

Chronic Kidney Disease (CKD), a global health burden, is strongly associated with age-related renal function decline, hypertension, and diabetes, which are all frequent consequences of obesity. Despite extensive studies, the mechanisms determining susceptibility to CKD remain insufficiently understood. Clinical evidence together with prior studies from our group showed that perinatal metabolic disorders after intrauterine growth restriction or maternal obesity adversely affect kidney structure and function throughout life. Since obesity and aging processes converge in similar pathways we tested if perinatal obesity caused by high-fat diet (HFD)-fed dams sensitizes aging-associated mechanisms in kidneys of newborn mice. The results showed a marked increase of γH2AX-positive cells with elevated 8-Oxo-dG (RNA/DNA damage), both indicative of DNA damage response and oxidative stress. Using unbiased comprehensive transcriptomics we identified compartment-specific differentially-regulated signaling pathways in kidneys after perinatal obesity. Comparison of these data to transcriptomic data of naturally aged kidneys and prematurely aged kidneys of genetic modified mice with a hypomorphic allele of Ercc1, revealed similar signatures, e.g., inflammatory signaling. In a biochemical approach we validated pathways of inflammaging in the kidneys after perinatal obesity. Collectively, our initial findings demonstrate premature aging-associated processes as a consequence of perinatal obesity that could determine the susceptibility for CKD early in life.


Assuntos
Senilidade Prematura , Insuficiência Renal Crônica , Feminino , Camundongos , Animais , Gravidez , Humanos , Senilidade Prematura/metabolismo , Obesidade/metabolismo , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Dieta Hiperlipídica/efeitos adversos , Envelhecimento/genética
4.
Int J Mol Sci ; 23(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35628414

RESUMO

Maternal obesity predisposes for hepato-metabolic disorders early in life. However, the underlying mechanisms causing early onset dysfunction of the liver and metabolism remain elusive. Since obesity is associated with subacute chronic inflammation and accelerated aging, we test the hypothesis whether maternal obesity induces aging processes in the developing liver and determines thereby hepatic growth. To this end, maternal obesity was induced with high-fat diet (HFD) in C57BL/6N mice and male offspring were studied at the end of the lactation [postnatal day 21 (P21)]. Maternal obesity induced an obese body composition with metabolic inflammation and a marked hepatic growth restriction in the male offspring at P21. Proteomic and molecular analyses revealed three interrelated mechanisms that might account for the impaired hepatic growth pattern, indicating prematurely induced aging processes: (1) Increased DNA damage response (γH2AX), (2) significant upregulation of hepatocellular senescence markers (Cdnk1a, Cdkn2a); and (3) inhibition of hepatic insulin/insulin-like growth factor (IGF)-1-AKT-p38-FoxO1 signaling with an insufficient proliferative growth response. In conclusion, our murine data demonstrate that perinatal obesity induces an obese body composition in male offspring with hepatic growth restriction through a possible premature hepatic aging that is indicated by a pathologic sequence of inflammation, DNA damage, senescence, and signs of a possibly insufficient regenerative capacity.


Assuntos
Proteína Forkhead Box O1 , Fator de Crescimento Insulin-Like I , Obesidade Materna , Efeitos Tardios da Exposição Pré-Natal , Proteínas Proto-Oncogênicas c-akt , Animais , Dano ao DNA , Feminino , Proteína Forkhead Box O1/metabolismo , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/metabolismo , Obesidade Materna/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Proteômica , Proteínas Proto-Oncogênicas c-akt/metabolismo
5.
Viruses ; 12(8)2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806708

RESUMO

The fatal acute respiratory coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Since COVID-19 was declared a pandemic by the World Health Organization in March 2020, infection and mortality rates have been rising steadily worldwide. The lack of a vaccine, as well as preventive and therapeutic strategies, emphasize the need to develop new strategies to mitigate SARS-CoV-2 transmission and pathogenesis. Since mouse hepatitis virus (MHV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2 share a common genus, lessons learnt from MHV and SARS-CoV could offer mechanistic insights into SARS-CoV-2. This review provides a comprehensive review of MHV in mice and SARS-CoV-2 in humans, thereby highlighting further translational avenues in the development of innovative strategies in controlling the detrimental course of SARS-CoV-2. Specifically, we have focused on various aspects, including host species, organotropism, transmission, clinical disease, pathogenesis, control and therapy, MHV as a model for SARS-CoV and SARS-CoV-2 as well as mouse models for infection with SARS-CoV and SARS-CoV-2. While MHV in mice and SARS-CoV-2 in humans share various similarities, there are also differences that need to be addressed when studying murine models. Translational approaches, such as humanized mouse models are pivotal in studying the clinical course and pathology observed in COVID-19 patients. Lessons from prior murine studies on coronavirus, coupled with novel murine models could offer new promising avenues for treatment of COVID-19.


Assuntos
Betacoronavirus/fisiologia , Infecções por Coronavirus/virologia , Vírus da Hepatite Murina/fisiologia , Pneumonia Viral/virologia , Animais , Betacoronavirus/genética , Betacoronavirus/patogenicidade , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Infecções por Coronavirus/transmissão , Modelos Animais de Doenças , Especificidade de Hospedeiro , Humanos , Camundongos , Vírus da Hepatite Murina/genética , Vírus da Hepatite Murina/patogenicidade , Pandemias , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2 , Internalização do Vírus , Replicação Viral
6.
Arterioscler Thromb Vasc Biol ; 37(8): 1559-1569, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28619995

RESUMO

OBJECTIVE: We determined in patients with pulmonary arterial (PA) hypertension (PAH) whether in addition to increased production of elastase by PA smooth muscle cells previously reported, PA elastic fibers are susceptible to degradation because of their abnormal assembly. APPROACH AND RESULTS: Fibrillin-1 and elastin are the major components of elastic fibers, and fibrillin-1 binds bone morphogenetic proteins (BMPs) and the large latent complex of transforming growth factor-ß1 (TGFß1). Thus, we considered whether BMPs like TGFß1 contribute to elastic fiber assembly and whether this process is perturbed in PAH particularly when the BMP receptor, BMPR2, is mutant. We also assessed whether in mice with Bmpr2/1a compound heterozygosity, elastic fibers are susceptible to degradation. In PA smooth muscle cells and adventitial fibroblasts, TGFß1 increased elastin mRNA, but the elevation in elastin protein was dependent on BMPR2; TGFß1 and BMP4, via BMPR2, increased extracellular accumulation of fibrillin-1. Both BMP4- and TGFß1-stimulated elastic fiber assembly was impaired in idiopathic (I) PAH-PA adventitial fibroblast versus control cells, particularly those with hereditary (H) PAH and a BMPR2 mutation. This was related to profound reductions in elastin and fibrillin-1 mRNA. Elastin protein was increased in IPAH PA adventitial fibroblast by TGFß1 but only minimally so in BMPR2 mutant cells. Fibrillin-1 protein increased only modestly in IPAH or HPAH PA adventitial fibroblasts stimulated with BMP4 or TGFß1. In Bmpr2/1a heterozygote mice, reduced PA fibrillin-1 was associated with elastic fiber susceptibility to degradation and more severe pulmonary hypertension. CONCLUSIONS: Disrupting BMPR2 impairs TGFß1- and BMP4-mediated elastic fiber assembly and is of pathophysiologic significance in PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Tecido Elástico/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Remodelação Vascular , Animais , Proteína Morfogenética Óssea 4/farmacologia , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/deficiência , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Tecido Elástico/patologia , Tecido Elástico/fisiopatologia , Elastina/genética , Elastina/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/patologia , Hipertensão Pulmonar Primária Familiar/fisiopatologia , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Predisposição Genética para Doença , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fenótipo , Artéria Pulmonar/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Interferência de RNA , Transfecção
7.
Obesity (Silver Spring) ; 24(6): 1266-73, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27106804

RESUMO

OBJECTIVE: One major risk factor for childhood overweight is maternal obesity. The underlying molecular mechanisms are ill-defined, and effective prevention strategies are missing. METHODS: Diet-induced obese mouse dams were changed to standard chow during pregnancy and lactation as an intervention against predisposition for obesity and metabolic sequelea in the offspring. Expression of adipokines and TRPV4, a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis, in offspring's white adipose tissue (WAT) was assessed. RESULTS: Pathological effects on offspring's body weight, fat content, and serum insulin were fully reversed in intervention offspring on postnatal day 21. In WAT, a sixfold increase of Trpv4 mRNA expression in offspring consuming high-fat-containing diet was found, which was completely blunted in the intervention group. Simultaneously, WAT adipokine, interleukin-6, and peroxisome proliferator-activated receptor-γ mRNA and UCP1 protein expression were largely returned to control levels in intervention offspring. CONCLUSIONS: Improvement of maternal nutrition offers a powerful strategy to improve offspring's metabolic health. Targeting TRPV4-linked aspects of WAT metabolic function during early development might be a promising approach to prevent long-term adverse metabolic effects of maternal high-fat nutrition.


Assuntos
Tecido Adiposo Branco/metabolismo , Hiperinsulinismo/metabolismo , Obesidade/metabolismo , Prenhez/fisiologia , Canais de Cátion TRPV/metabolismo , Adiposidade , Animais , Peso Corporal , Dieta Hiperlipídica/efeitos adversos , Feminino , Resistência à Insulina , Masculino , Camundongos , Camundongos Obesos , Condicionamento Físico Animal , Gravidez
8.
Cell Metab ; 21(4): 596-608, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25863249

RESUMO

Mitochondrial dysfunction, inflammation, and mutant bone morphogenetic protein receptor 2 (BMPR2) are associated with pulmonary arterial hypertension (PAH), an incurable disease characterized by pulmonary arterial (PA) endothelial cell (EC) apoptosis, decreased microvessels, and occlusive vascular remodeling. We hypothesized that reduced BMPR2 induces PAEC mitochondrial dysfunction, promoting a pro-inflammatory or pro-apoptotic state. Mice with EC deletion of BMPR2 develop hypoxia-induced pulmonary hypertension that, in contrast to non-transgenic littermates, does not reverse upon reoxygenation and is associated with reduced PA microvessels and lung EC p53, PGC1α and TFAM, regulators of mitochondrial biogenesis, and mitochondrial DNA. Decreasing PAEC BMPR2 by siRNA during reoxygenation represses p53, PGC1α, NRF2, TFAM, mitochondrial membrane potential, and ATP and induces mitochondrial DNA deletion and apoptosis. Reducing PAEC BMPR2 in normoxia increases p53, PGC1α, TFAM, mitochondrial membrane potential, ATP production, and glycolysis, and induces mitochondrial fission and a pro-inflammatory state. These features are recapitulated in PAECs from PAH patients with mutant BMPR2.


Assuntos
Sobrevivência Celular/fisiologia , Células Endoteliais/fisiologia , Hipertensão Pulmonar/metabolismo , Mitocôndrias/metabolismo , Modelos Biológicos , Artéria Pulmonar/fisiologia , Regeneração/fisiologia , Análise de Variância , Animais , Western Blotting , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , DNA/metabolismo , Primers do DNA/genética , Citometria de Fluxo , Imunofluorescência , Células HEK293 , Humanos , Hipertensão Pulmonar/fisiopatologia , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Reação em Cadeia da Polimerase , Artéria Pulmonar/citologia , RNA Interferente Pequeno/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA