Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Cell Physiol Biochem ; 54(1): 27-39, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31935048

RESUMO

BACKGROUND/AIMS: To test whether the physiological regulation of the cardiac Kv4 channels by the Ca2+/calmodulin-dependent protein kinase II (CaMKII) is restricted to lipid rafts and whether the interactions observed in rat cardiomyocytes also occur in the human ventricle. METHODS: Ventricular myocytes were freshly isolated from Sprague-Dawley rats. Ito was recorded by the whole-cell Patch-Clamp technique. Membrane rafts were isolated by centrifugation in a discontinuous sucrose density gradient. The presence of the proteins of interest was analysed by western blot. Immunogold staining and electron microscopy of heart vibrosections was performed to localize Kv4.2/Kv4.3 and CaMKII proteins. Protein-protein interactions were determined by co-immunoprecipitation experiments in rat and human ventricular mycoytes. RESULTS: Patch-Clamp recordings in control conditions and after lipid raft or caveolae disruption show that the CaMKII-Kv4 channel complex must associate in non-caveolar lipid rafts to be functional. Separation in density gradients, co-immunoprecipitation and electron microscopy show that there are two Kv4 channel populations: one located in caveolae, that is CaMKII independent, and another one located in planar membrane rafts, which is bound to CaMKII. CONCLUSION: CaMKII regulates only the Kv4 channel population located in non-caveolar lipid rafts. Thus, the regulation of cardiac Kv4 channels in rat and human ventricle depends on their subcellular localization.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Microdomínios da Membrana/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/análise , Cavéolas/metabolismo , Células Cultivadas , Humanos , Transporte de Íons , Potássio/metabolismo , Mapas de Interação de Proteínas , Ratos Sprague-Dawley , Canais de Potássio Shal/análise
2.
Toxicol Sci ; 168(1): 225-240, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30521027

RESUMO

The standard methods for toxicity testing using rodent models cannot keep pace with the increasing number of chemicals in our environment due to time and resource limitations. Hence, there is an unmet need for fast, sensitive, and cost-effective alternate models to reliably predict toxicity. As part of Tox21 Phase III's effort, a 90-compound library was created and made available to researchers to screen for neurotoxicants using novel technology and models. The chemical library was evaluated in zebrafish in a dose-range finding test for embryo-toxicity (ie, mortality or morphological alterations induced by each chemical). In addition, embryos exposed to the lowest effect level and nonobservable effect level were used to measure the internal concentration of the chemicals within the embryos by bioanalysis. Finally, considering the lowest effect level as the highest testing concentration, a functional assay was performed based on locomotor activity alteration in response to light-dark changes. The quality control chemicals included in the library, ie, negative controls and replicated chemicals, indicate that the assays performed were reliable. The use of analytical chemistry pointed out the importance of measuring chemical concentration inside embryos, and in particular, in the case of negative chemicals to avoid false negative classification. Overall, the proposed approach presented a good sensitivity and supports the inclusion of zebrafish assays as a reliable, relevant, and efficient screening tool to identify, prioritize, and evaluate chemical toxicity.


Assuntos
Embrião não Mamífero/efeitos dos fármacos , Larva/efeitos dos fármacos , Síndromes Neurotóxicas , Testes de Toxicidade/métodos , Peixe-Zebra/crescimento & desenvolvimento , Animais , Bioensaio , Retardadores de Chama/toxicidade , Atividade Motora/efeitos dos fármacos , Praguicidas/toxicidade , Preparações Farmacêuticas , Bibliotecas de Moléculas Pequenas , Natação
3.
Neurotoxicol Teratol ; 70: 40-50, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30312655

RESUMO

Following the voluntary phase-out of brominated flame retardants (BFRs) due to their environmental persistence and toxicity, the organophosphorus flame retardants (OPFRs) are emerging replacements. However, there is limited information on the potential human health effects of the OPFRs. Zebrafish embryos are a viable vertebrate model organism with many advantages for high throughput testing toward human hazard assessment. We utilized zebrafish embryos to assess developmental toxicity, neurotoxicity, cardiotoxicity and hepatotoxicity, of eight replacement OPFRs: (triphenyl phosphate [TPHP], isopropylated phenyl phosphate [IPP], 2-ethylhexyl diphenyl phosphate [EHDP], tert-butylated phenyl diphenyl phosphate [BPDP], trimethyl phenyl phosphate [TMPP], isodecyl diphenyl phosphate [IDDP], tris(1,3-dichloroisopropyl) phosphate [TDCIPP], and tris(2-chloroethyl) phosphate [TCEP]) and two BFRs (3,3',5,5'- tetrabromobisphenol A [TBBPA] and 2,2'4,4'-brominated diphenyl ether [BDE-47]). To determine potential effects on teratogenicity, embryos were exposed to flame retardants (FRs) at 4 h post fertilization (hpf) to 4 days post fertilization (dpf) and morphological alterations and corresponding survival were evaluated at 2 and 4 dpf. Internal concentrations were measured in larvae used in this assay by liquid chromatography-mass spectrometry. Locomotor activity was assessed in larvae treated for 48 h (from 3 dpf to 5 dpf), followed by hepatotoxicity evaluation. Finally, alterations in heart rate and rhythmicity were assessed to determine cardiotoxicity in 48 hpf embryos exposed to compounds for 3 h. Results suggest that several OPFRs (BPDP, EHDP; IPP, TMPP; TPHP and TDCIPP) produced adverse effects in multiple target organs at concentrations comparable to the two BFRs. As these OPFRs have the capacity to disrupt an integrated vertebrate model, they potentially have the capacity to affect mammalian biology. Then, we compared the lowest effective levels (LEL) in zebrafish with estimated or measured human plasma concentrations using biomonitoring data (human plasma, breast milk, handwipe samples and house dust) and a high throughput toxicokinetic (HTTK) model. Results indicate that for some compounds, the nominal LELs were within the range of human exposures, while internal LELs in zebrafish are above internal exposures in humans. These findings demonstrate the value of the zebrafish model as a relevant screening tool and support the need for further hazard characterization of the OPFRs.


Assuntos
Desenvolvimento Embrionário/efeitos dos fármacos , Retardadores de Chama/toxicidade , Organofosfatos/toxicidade , Compostos Organofosforados/toxicidade , Animais , Cardiotoxicidade/etiologia , Humanos , Síndromes Neurotóxicas/etiologia , Organofosfatos/farmacologia , Peixe-Zebra
4.
Cell Physiol Biochem ; 40(6): 1261-1273, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27997898

RESUMO

BACKGROUND: The rapid delayed rectifier K+ current (IKr), carried by the hERG protein, is one of the main repolarising currents in the human heart and a reduction of this current increases the risk of ventricular fibrillation. α1-adrenoceptors (α1-AR) activation reduces IKr but, despite the clear relationship between an increase in the sympathetic tone and arrhythmias, the mechanisms underlying the α1-AR regulation of the hERG channel are controversial. Thus, we aimed to investigate the mechanisms by which α1-AR stimulation regulates IKr. METHODS: α1-adrenoceptors, hERG channels, auxiliary subunits minK and MIRP1, the non PIP2-interacting mutant D-hERG (with a deletion of the 883-894 amino acids) in the C-terminal and the non PKC-phosphorylable mutant N-terminal truncated-hERG (NTK-hERG) were transfected in HEK293 cells. Cell membranes were extracted by centrifugation and the different proteins were visualized by Western blot. Potassium currents were recorded by the patch-clamp technique. IKr was recorded in isolated feline cardiac myocytes. RESULTS: Activation of the α1-AR reduces the amplitude of IhERG and IKr through a positive shift in the activation half voltage, which reduces the channel availability at physiological membrane potentials. The intracellular pathway connecting the α1-AR to the hERG channel in HEK293 cells includes activation of the Gαq protein, PLC activation and PIP2 hydrolysis, activation of PKC and direct phosphorylation of the hERG channel N-terminal. The PKC-mediated IKr channel phosphorylation and subsequent IKr reduction after α1-AR stimulation was corroborated in feline cardiac myocytes. CONCLUSIONS: These findings clarify the link between sympathetic nervous system hyperactivity and IKr reduction, one of the best characterized causes of torsades de pointes and ventricular fibrillation.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Gatos , Ativação Enzimática/efeitos dos fármacos , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Fenilefrina/farmacologia , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosforilação/efeitos dos fármacos , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo
5.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27467575

RESUMO

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Assuntos
Antimaláricos/uso terapêutico , Conjuntos de Dados como Assunto , Descoberta de Drogas/métodos , Malária/tratamento farmacológico , Doenças Negligenciadas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequenas
6.
Pharmacol Res ; 84: 26-31, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24747832

RESUMO

Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing.


Assuntos
Potenciais de Ação/fisiologia , Embrião não Mamífero/fisiologia , Ventrículos do Coração/efeitos dos fármacos , Canais Iônicos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Técnicas In Vitro , Canais Iônicos/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Peixe-Zebra
7.
Biochim Biophys Acta ; 1838(2): 692-9, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23811359

RESUMO

The heart must constantly adapt its activity to the needs of the body. In any potentially dangerous or physically demanding situation the activated sympathetic nervous system leads a very fast cardiac response. Under these circumstances, α1-adrenergic receptors activate intracellular signaling pathways that finally phosphorylate the caveolae-located subpopulation of Kv4 channels and reduce the transient outward K(+) current (Ito) amplitude. This reduction changes the shape of the cardiac action potential and makes the plateau phase to start at higher voltages. This means that there are more calcium ions entering the myocyte and the result is an increase in the strength of the contraction. However, an excessive reduction of Ito could dangerously prolong action potential duration and this could cause arrhythmias when the heart rate is high. This excessive current reduction does not occur because there is a second population of Ito channels located in non-caveolar membrane rafts that are not accessible for α1-AR mediated regulation. Thus, the location of the components of a given transduction signaling pathway in membrane domains determines the correct and safe behavior of the heart. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.


Assuntos
Coração/fisiologia , Canais Iônicos/metabolismo , Microdomínios da Membrana/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Canais de Potássio Shal/metabolismo , Animais , Humanos
8.
Cell Physiol Biochem ; 31(1): 25-36, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23343624

RESUMO

BACKGROUND/AIMS: In diabetic ventricular myocytes, transient outward potassium current (Ito) amplitude is severely reduced because of the impaired catecholamine release that characterizes diabetic autonomic neuropathy. Sympathetic nervous system exhibits a trophic effect on Ito since incubation of myocytes with noradrenaline restores current amplitude via beta-adrenoceptor (ßAR) stimulation. Here, we investigate the intracellular signalling pathway though which incubation of diabetic cardiomyocytes with the ßAR agonist isoproterenol recovers Ito amplitude to normal values. METHODS: Experiments were performed in ventricular myocytes isolated from streptozotocin-diabetic rats. Ito current was recorded by using the patch-clamp technique. Kv4 channel expression was determined by immunofluorescence. Protein-protein interaction was determined by coimmunoprecipitation. RESULTS: Stimulation of ßAR activates first a Gαs protein, adenylyl cyclase and Protein Kinase A. PKA-phosphorylated receptor then switches to the Gαi protein. This leads to the activation of the ßAR-Kinase-1 and further receptor phosphorylation and arrestin dependent internalization. The internalized receptor-arrestin complex recruits and activates cSrc and the MAPK cascade, where Ras, c-Raf1 and finally ERK1/2 mediate the increase in Kv4.2 and Kv4.3 protein abundance in the plasma membrane. CONCLUSION: ß2AR stimulation activates a Gαs and Gαi protein dependent pathway where the ERK1/2 modulates the Ito current amplitude and the density of the Kv4.2 and Kv4.2 channels in the plasma membrane upon sympathetic stimulation in diabetic heart.


Assuntos
Potenciais da Membrana/fisiologia , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Adenilil Ciclases/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Arrestina/metabolismo , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Isoproterenol/farmacologia , Potenciais da Membrana/efeitos dos fármacos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Técnicas de Patch-Clamp , Fosforilação , Potássio/metabolismo , Mapas de Interação de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores Adrenérgicos beta/química , Canais de Potássio Shal/metabolismo , Transdução de Sinais
9.
Heart Rhythm ; 9(5): 760-9, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22155597

RESUMO

BACKGROUND: Cardiac sodium channel ß-subunit mutations have been associated with several inherited cardiac arrhythmia syndromes. OBJECTIVE: To identify and characterize variations in SCN1Bb associated with Brugada syndrome (BrS) and sudden infant death syndrome (SIDS). METHODS: All known exons and intron borders of the BrS-susceptibility genes were amplified and sequenced in both directions. Wild type (WT) and mutant genes were expressed in TSA201 cells and studied using co-immunoprecipitation and whole-cell patch-clamp techniques. RESULTS: Patient 1 was a 44-year-old man with an ajmaline-induced type 1 ST-segment elevation in V1 and V2 supporting the diagnosis of BrS. Patient 2 was a 62-year-old woman displaying a coved-type BrS electrocardiogram who developed cardiac arrest during fever. Patient 3 was a 4-month-old female SIDS case. A R214Q variant was detected in exon 3A of SCN1Bb (Na(v)1B) in all three probands, but not in any other gene previously associated with BrS or SIDS. R214Q was identified in 4 of 807 ethnically-matched healthy controls (0.50%). Co-expression of SCN5A/WT + SCN1Bb/R214Q resulted in peak sodium channel current (I(Na)) 56.5% smaller compared to SCN5A/WT + SCN1Bb/WT (n = 11-12, P<0.05). Co-expression of KCND3/WT + SCN1Bb/R214Q induced a Kv4.3 current (transient outward potassium current, I(to)) 70.6% greater compared with KCND3/WT + SCN1Bb/WT (n = 10-11, P<0.01). Co-immunoprecipitation indicated structural association between Na(v)ß1B and Na(v)1.5 and K(v)4.3. CONCLUSION: Our results suggest that R214Q variation in SCN1Bb is a functional polymorphism that may serve as a modifier of the substrate responsible for BrS or SIDS phenotypes via a combined loss of function of sodium channel current and gain of function of transient outward potassium current.


Assuntos
Arritmias Cardíacas/genética , Síndrome de Brugada/genética , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Canais de Potássio/genética , Morte Súbita do Lactente/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Adulto , Arritmias Cardíacas/metabolismo , Western Blotting , Síndrome de Brugada/fisiopatologia , Eletrocardiografia , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Biologia Molecular , Mutação , Polimorfismo Genético , Canais de Potássio/metabolismo , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/metabolismo
10.
Channels (Austin) ; 4(3): 168-78, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20224290

RESUMO

In ventricular myocytes, α1-AR stimulates Gαs proteins and reduces the transient outward K(+) current (I(to)) via a cAMP/PKA-mediated pathway and thus regulates cardiac contraction and excitability. This I(to) reduction is compartmentalized and limited to discrete membrane regions since PKA-dependent phosphorylation of the I(to) channels after α1-AR stimulation requires the integrity of both the sarcoplasmic membrane and the cytoskeleton. The aim of this work was to investigate the mechanisms involved in the compartmentalization of the PKA-dependent modulation of I(to) in response to α1-AR activation. I(to) current recordings were performed by the Patch-Clamp technique. Membrane rafts from isolated ventricular myocytes were extracted by centrifugation in a sucrose density gradient. The different proteins were visualized by western blot and protein-protein interactions determined by coimmunoprecipitation experiments. Localization of I(to) channel in caveolae, particular subtypes of membrane rafts, was achieved by electron microscopy. Patch-Clamp recordings show that a functional supramolecular complex, kept together by the Akinase anchoring protein AKAP100, exist in caveolae in living myocytes. Density gradients and immunoprecipitation experiments show that the components of the α1-AR/I(to) pathway localize in caveolae, forming two different groups of proteins. The K(V)4.2/K(V)4.3 channel forms a supramolecular complex with PKA through AKAP100 and is attached to caveolae by interacting with caveolin-3. On the other hand, α1-AR, Gαs and adenylate cyclase gather in a second group also connected to caveolin-3. Therefore, both groups of preassembled proteins are maintained in close proximity by caveolin-3. A different I(to) channel population localizes in non-caveolar membrane rafts and is not sensitive to α1-adrenergic regulation.


Assuntos
Caveolina 3/metabolismo , Compartimento Celular , Complexos Multiproteicos/metabolismo , Receptores Adrenérgicos alfa 1/fisiologia , Receptores Adrenérgicos/fisiologia , Canais de Potássio Shal/metabolismo , Animais , Cavéolas , Ventrículos do Coração/citologia , Microdomínios da Membrana , Células Musculares/química , Células Musculares/metabolismo , Miocárdio/química , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
11.
Can J Physiol Pharmacol ; 87(2): 77-83, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19234570

RESUMO

Diabetic patients have a higher incidence of cardiac arrhythmias, including ventricular fibrillation and sudden death, and show important alterations in the electrocardiogram, most of these related to the repolarization. In myocytes isolated from diabetic hearts, the transient outward K+ current (Ito) is the repolarizing current that is mainly affected. Type 1 diabetes alters Ito at 3 levels: the recovery of inactivation, the responsiveness to physiologic regulators, and the functional expression of the channel. Diabetes slows down Ito recovery of inactivation because it triggers the switching from fast-recovering Kv4.x channels to the slow-recovering Kv1.4. Diabetic animals also have decreased responsiveness of Ito towards the sympathetic nervous system; thus, the diabetic heart develops a resistance to its physiologic regulator. Finally, diabetes impairs support of various trophic factors required for the functional expression of the channel and reduces Ito amplitude by decreasing the amount of Kv4.2 and Kv4.3 proteins.


Assuntos
Arritmias Cardíacas/metabolismo , Complicações do Diabetes/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio/metabolismo , Potenciais de Ação , Animais , Arritmias Cardíacas/fisiopatologia , Complicações do Diabetes/fisiopatologia , Humanos , Cinética , Canal de Potássio Kv1.4/metabolismo , Canais de Potássio Shal/metabolismo , Sistema Nervoso Simpático/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA