RESUMO
A novel electrochemical biosensor was developed to monitor fibroblast cells stress levels for the first time in situ under external stimuli based on the recognition of superoxide anion released upon cell damage. The biosensor comprised metallized polycaprolactone electrospun fibers covered with zinc oxide for improved cell adhesion and signal transduction, whilst stable bioconjugates of mercaptobenzoic acid-functionalized gold nanoparticles/superoxide dismutase were employed as recognition bioelements. Biosensors were first tested and optimized for in situ generated superoxide detection by fixed potential amperometry at +0.3 V, with minimal interferences from electroactive species in cell culture media. L929 fibroblast cells were then implanted on the optimized biosensor surface and the biosensor morphologically characterized by scanning electron microscopy (SEM) and fluorescence microscopy, which illustrated the network-type pattern of fibroblasts adjacent to the fiber scaffold. Fibroblast stress was induced by zymosan and monitored at the cells integrated biosensor using fixed potential amperometry (CA) with a sensitivity of 26 nA cm-2 µg mL-1 zymosan and electrochemical impedance spectroscopy (EIS), with similar sensitivity of the biosensor considering the Rs and Z' parameters of around 0.13 Ω cm2 µg-1 mL and high correlation factors R2 of 0.9994. The obtained results underline the applicability of the here developed biosensor for the electrochemical screening of the fibroblast cells stress. The concept in using low-cost biocompatible polymeric fibers as versatile scaffolds for both enzyme immobilization and cell adhesion, opens a new path in developing biosensors for the in-situ investigation of a variety of cellular events.
Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Técnicas Biossensoriais/métodos , Ouro/química , Zimosan , Superóxido Dismutase/química , Superóxidos/metabolismo , Técnicas EletroquímicasRESUMO
A novel and disposable biosensor based on superoxide dismutase (SOD) immobilized on gold metallized polycaprolactone electrospun polymeric fibers (PCl/Au) has been developed for the determination of superoxide (O2â¢-) in cell culture media. SOD biosensors were constructed employing three immobilization methods: cross-linking with EDC/NHS at a cysteine self-assembled monolayer (PCl/Au/SODCYS), biopolymer encapsulation with chitosan (PCl/Au/SODCHI) and cross-linking with glutaraldehyde (PCl/Au/SODGA). Scanning electron microscopy was performed at the three different biosensors to evaluate their surface morphologies. Biosensors were employed for the electrochemical detection of superoxide by fixed potential amperometry at different applied potentials, with two distinct enzymatic mechanisms being proposed: i) the reduction of the enzymatically generated peroxide, at -0.3 V, for which the PCl/Au/SODCHI biosensor presented the highest value of sensitivity of 40.1 µA mM-1 cm-2, and ii) the regeneration of the enzyme catalytic copper centre, at +0.3 V, for which the PCl/Au/SODCYS biosensor had the highest sensitivity value of 16.1 µA mM-1 cm-2. The proposed recognition mechanisms were further confirmed by cyclic voltammetric measurements, which enabled also to determine the amount of immobilized electroactive SOD, with highest value corresponding to the PCl/Au/SODCYS biosensor. The biosensors with best analytical performance, PCl/Au/SODCYS and PCl/Au/SODCHI, were further investigated for stability and selectivity, with best results for the PCl/Au/SODCYS, chosen for superoxide monitoring in cell culture media. The study is promising for future application of PCl/Au/SODCYS for the on-line superoxide monitoring of superoxide in cell cultures, grown directly on the biosensor itself.