Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Biol Lett ; 21: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28536614

RESUMO

BACKGROUND: In this study, we evaluated the usefulness of two commercially available hyaluronic acid-based hydrogels, HyStem and HyStem-C, for the cultivation of Wharton's jelly mesenchymal stem cells (WJ-MSCs) and their differentiation towards chondrocytes. METHODS: The WJ-MSCs were isolated from umbilical cord Wharton's jelly using the explant method and their immunophenotype was evaluated via flow cytometry analysis. According to the criteria established by the International Society for Cellular Therapy, they were true MSCs. We assessed the ability of the WJ-MSCs and chondrocytes to grow in three-dimensional hydrogels and their metabolic activity. Chondrogenesis of WJ-MSCs in the hydrogels was determined using alcian blue and safranin O staining and real-time PCR evaluation of gene expression in the extracellular matrixes: collagen type I, II, III and aggrecan. RESULTS: Chondrocytes and WJ-MSCs cultured in the HyStem and HyStem-C hydrogels adopted spherical shapes, which are characteristic for encapsulated cells. The average viability of the WJ-MSCs and chondrocytes in the HyStem hydrogels was approximately 67 % when compared with the viability in 2D culture. Alcian blue and safranin O staining revealed intensive production of proteoglycans by the cells in the HyStem hydrogels. Increased expression of collagen type II and aggrecan in the WJ-MSCs cultured in the HyStem hydrogel in the presence of chondrogenic medium showed that under these conditions, the cells have a high capacity to differentiate towards chondrocytes. The relatively high viability of WJ-MSCs and chondrocytes in both HyStem hydrogels suggests the possibility of their use for chondrogenesis. CONLUSIONS: The results indicate that WJ-MSCs have some degree of chondrogenic potential in HyStem and HyStem-C hydrogels, showing promise for the engineering of damaged articular cartilage.


Assuntos
Condrogênese/efeitos dos fármacos , Ácido Hialurônico/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Geleia de Wharton/citologia , Células Cultivadas , Humanos , Hidrogéis , Células-Tronco Mesenquimais/fisiologia
2.
Cell Mol Biol Lett ; 21: 14, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28536617

RESUMO

BACKGROUND: In cartilage tissue regeneration, it is important to develop biodegradable scaffolds that provide a structural and logistic template for three-dimensional cultures of chondrocytes. In this study, we evaluated changes in expression of cartilaginous genes during in vitro chondrogenic differentiation of WJ-MSCs on PLGA scaffolds. METHODS: The biocompatibility of the PLGA material was investigated using WJ-MSCs by direct and indirect contact methods according to the ISO 10993-5 standard. PLGA scaffolds were fabricated by the solvent casting/salt-leaching technique. We analyzed expression of chondrogenic genes of WJ-MSCs after a 21-day culture. RESULTS: The results showed the biocompatibility of PLGA and confirmed the usefulness of PLGA as material for fabrication of 3D scaffolds that can be applied for WJ-MSC culture. The in vitro penetration and colonization of the scaffolds by WJ-MSCs were assessed by confocal microscopy. The increase in cell number demonstrated that scaffolds made of PLGA copolymers enabled WJ-MSC proliferation. The obtained data showed that as a result of chondrogenesis of WJ-MSCs on the PLGA scaffold the expression of the key markers collagen type II and aggrecan was increased. CONCLUSIONS: The observed changes in transcriptional activity of cartilaginous genes suggest that the PLGA scaffolds may be applied for WJ-MSC differentiation. This primary study suggests that chondrogenic capacity of WJ-MSCs cultured on the PLGA scaffolds can be useful for cell therapy of cartilage.


Assuntos
Condrogênese/genética , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Mesenquimais/metabolismo , Poliglactina 910/farmacologia , Alicerces Teciduais , Geleia de Wharton/citologia , Agrecanas/genética , Células Cultivadas , Condrogênese/efeitos dos fármacos , Colágeno Tipo II/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/fisiologia , Geleia de Wharton/metabolismo , Geleia de Wharton/fisiologia
3.
Acta Pol Pharm ; 71(6): 917-21, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25745763

RESUMO

Melanoma malignant is characterized by a high malignancy and low susceptibility to treatment. Due to these properties, there is a growing interest in compounds that would have the ability to inhibit proliferation, induce differentiation of tumor cells and initiate the apoptotic pathway. In vitro and in vivo research indicate that valproic acid (a histone deacetylase inhibitor) may have anti-cancer properties. In our study, the role of VPA on proliferation and apoptosis in G-361 human melanoma cell line was examined. Obtained results indicated that administration of VPA at concentrations above ≥ 1 mM led to significant inhibition of cell growth. Simultaneously, it was observed that VPA at higher concentrations (5 and 10 mM) caused an increase in caspase-3 activity.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Melanoma/patologia , Ácido Valproico/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Histona Desacetilases/metabolismo , Humanos , Melanoma/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA