Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microlife ; 5: uqae006, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659623

RESUMO

The mimivirus 1.2 Mb genome was shown to be organized into a nucleocapsid-like genomic fiber encased in the nucleoid compartment inside the icosahedral capsid. The genomic fiber protein shell is composed of a mixture of two GMC-oxidoreductase paralogs, one of them being the main component of the glycosylated layer of fibrils at the surface of the virion. In this study, we determined the effect of the deletion of each of the corresponding genes on the genomic fiber and the layer of surface fibrils. First, we deleted the GMC-oxidoreductase, the most abundant in the genomic fiber, and determined its structure and composition in the mutant. As expected, it was composed of the second GMC-oxidoreductase and contained 5- and 6-start helices similar to the wild-type fiber. This result led us to propose a model explaining their coexistence. Then we deleted the GMC-oxidoreductase, the most abundant in the layer of fibrils, to analyze its protein composition in the mutant. Second, we showed that the fitness of single mutants and the double mutant were not decreased compared with the wild-type viruses under laboratory conditions. Third, we determined that deleting the GMC-oxidoreductase genes did not impact the glycosylation or the glycan composition of the layer of surface fibrils, despite modifying their protein composition. Because the glycosylation machinery and glycan composition of members of different clades are different, we expanded the analysis of the protein composition of the layer of fibrils to members of the B and C clades and showed that it was different among the three clades and even among isolates within the same clade. Taken together, the results obtained on two distinct central processes (genome packaging and virion coating) illustrate an unexpected functional redundancy in members of the family Mimiviridae, suggesting this may be the major evolutionary force behind their giant genomes.

2.
Mol Biol Evol ; 40(11)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37950899

RESUMO

Pithoviridae are amoeba-infecting giant viruses possessing the largest viral particles known so far. Since the discovery of Pithovirus sibericum, recovered from a 30,000-yr-old permafrost sample, other pithoviruses, and related cedratviruses, were isolated from various terrestrial and aquatic samples. Here, we report the isolation and genome sequencing of 2 Pithoviridae from soil samples, in addition to 3 other recent isolates. Using the 12 available genome sequences, we conducted a thorough comparative genomic study of the Pithoviridae family to decipher the organization and evolution of their genomes. Our study reveals a nonuniform genome organization in 2 main regions: 1 concentrating core genes and another gene duplications. We also found that Pithoviridae genomes are more conservative than other families of giant viruses, with a low and stable proportion (5% to 7%) of genes originating from horizontal transfers. Genome size variation within the family is mainly due to variations in gene duplication rates (from 14% to 28%) and massive invasion by inverted repeats. While these repeated elements are absent from cedratviruses, repeat-rich regions cover as much as a quarter of the pithoviruses genomes. These regions, identified using a dedicated pipeline, are hotspots of mutations, gene capture events, and genomic rearrangements that contribute to their evolution.


Assuntos
Genoma Viral , Vírus Gigantes , Filogenia , Genômica , Vírus Gigantes/genética , Vírion/genética , Evolução Molecular
3.
Viruses ; 15(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851778

RESUMO

One quarter of the Northern hemisphere is underlain by permanently frozen ground, referred to as permafrost. Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decomposes into carbon dioxide and methane, further enhancing the greenhouse effect. Part of this organic matter also consists of revived cellular microbes (prokaryotes, unicellular eukaryotes) as well as viruses that have remained dormant since prehistorical times. While the literature abounds on descriptions of the rich and diverse prokaryotic microbiomes found in permafrost, no additional report about "live" viruses have been published since the two original studies describing pithovirus (in 2014) and mollivirus (in 2015). This wrongly suggests that such occurrences are rare and that "zombie viruses" are not a public health threat. To restore an appreciation closer to reality, we report the preliminary characterizations of 13 new viruses isolated from seven different ancient Siberian permafrost samples, one from the Lena river and one from Kamchatka cryosol. As expected from the host specificity imposed by our protocol, these viruses belong to five different clades infecting Acanthamoeba spp. but not previously revived from permafrost: Pandoravirus, Cedratvirus, Megavirus, and Pacmanvirus, in addition to a new Pithovirus strain.


Assuntos
Acanthamoeba , Pergelissolo , Eucariotos , Células Eucarióticas , Dióxido de Carbono
4.
Nat Commun ; 14(1): 428, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36702819

RESUMO

Giant viruses (GVs) are a hotspot of unresolved controversies since their discovery, including the definition of "Virus" and their origin. While increasing knowledge of genome diversity has accumulated, GV functional genomics was largely neglected. Here, we describe an experimental framework to genetically modify nuclear GVs and their host Acanthamoeba castellanii using CRISPR/Cas9, shedding light on the evolution from small icosahedral viruses to amphora-shaped GVs. Ablation of the icosahedral major capsid protein in the phylogenetically-related mollivirus highlights a transition in virion shape and size. We additionally demonstrate the existence of a reduced core essential genome in pandoravirus, reminiscent of their proposed smaller ancestors. This proposed genetic expansion led to increased genome robustness, indicating selective pressures for adaptation to uncertain environments. Overall, we introduce new tools for manipulation of the unexplored genome of nuclear GVs and provide experimental evidence suggesting that viral gigantism has aroused as an emerging trait.


Assuntos
Acanthamoeba castellanii , Vírus Gigantes , Vírus , Vírus de DNA/genética , Sistemas CRISPR-Cas/genética , Acanthamoeba castellanii/genética , Vírus Gigantes/genética , Vírus/genética , Genoma Viral/genética , Filogenia , Evolução Molecular
5.
Elife ; 112022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35900198

RESUMO

Mimivirus is the prototype of the Mimiviridae family of giant dsDNA viruses. Little is known about the organization of the 1.2 Mb genome inside the membrane-limited nucleoid filling the ~0.5 µm icosahedral capsids. Cryo-electron microscopy, cryo-electron tomography, and proteomics revealed that it is encased into a ~30-nm diameter helical protein shell surprisingly composed of two GMC-type oxidoreductases, which also form the glycosylated fibrils decorating the capsid. The genome is arranged in 5- or 6-start left-handed super-helices, with each DNA-strand lining the central channel. This luminal channel of the nucleoprotein fiber is wide enough to accommodate oxidative stress proteins and RNA polymerase subunits identified by proteomics. Such elegant supramolecular organization would represent a remarkable evolutionary strategy for packaging and protecting the genome, in a state ready for immediate transcription upon unwinding in the host cytoplasm. The parsimonious use of the same protein in two unrelated substructures of the virion is unexpected for a giant virus with thousand genes at its disposal.


Assuntos
Vírus Gigantes , Mimiviridae , Capsídeo/metabolismo , Microscopia Crioeletrônica/métodos , Genoma Viral , Vírus Gigantes/genética , Mimiviridae/genética , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Oxirredutases/metabolismo
6.
Nat Commun ; 11(1): 2657, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32461636

RESUMO

DNA methylation is an important epigenetic mark that contributes to various regulations in all domains of life. Giant viruses are widespread dsDNA viruses with gene contents overlapping the cellular world that also encode DNA methyltransferases. Yet, virtually nothing is known about the methylation of their DNA. Here, we use single-molecule real-time sequencing to study the complete methylome of a large spectrum of giant viruses. We show that DNA methylation is widespread, affecting 2/3 of the tested families, although unevenly distributed. We also identify the corresponding viral methyltransferases and show that they are subject to intricate gene transfers between bacteria, viruses and their eukaryotic host. Most methyltransferases are conserved, functional and under purifying selection, suggesting that they increase the viruses' fitness. Some virally encoded methyltransferases are also paired with restriction endonucleases forming Restriction-Modification systems. Our data suggest that giant viruses' methyltransferases are involved in diverse forms of virus-pathogens interactions during coinfections.


Assuntos
Metilação de DNA/genética , Epigenoma/genética , Vírus Gigantes/genética , Evolução Biológica , Enzimas de Restrição do DNA/genética , Enzimas de Restrição-Modificação do DNA/genética , Genes Virais , Genoma Viral , Interações Hospedeiro-Parasita/genética , Metiltransferases/genética , Filogenia
7.
J Virol ; 94(8)2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-31996429

RESUMO

Microbes trapped in permanently frozen paleosoils (permafrost) are the focus of increasing research in the context of global warming. Our previous investigations led to the discovery and reactivation of two Acanthamoeba-infecting giant viruses, Mollivirus sibericum and Pithovirus sibericum, from a 30,000-year old permafrost layer. While several modern pithovirus strains have since been isolated, no contemporary mollivirus relative was found. We now describe Mollivirus kamchatka, a close relative to M. sibericum, isolated from surface soil sampled on the bank of the Kronotsky River in Kamchatka, Russian Federation. This discovery confirms that molliviruses have not gone extinct and are at least present in a distant subarctic continental location. This modern isolate exhibits a nucleocytoplasmic replication cycle identical to that of M. sibericum Its spherical particle (0.6 µm in diameter) encloses a 648-kb GC-rich double-stranded DNA genome coding for 480 proteins, of which 61% are unique to these two molliviruses. The 461 homologous proteins are highly conserved (92% identical residues, on average), despite the presumed stasis of M. sibericum for the last 30,000 years. Selection pressure analyses show that most of these proteins contribute to virus fitness. The comparison of these first two molliviruses clarify their evolutionary relationship with the pandoraviruses, supporting their provisional classification in a distinct family, the Molliviridae, pending the eventual discovery of intermediary missing links better demonstrating their common ancestry.IMPORTANCE Virology has long been viewed through the prism of human, cattle, or plant diseases, leading to a largely incomplete picture of the viral world. The serendipitous discovery of the first giant virus visible under a light microscope (i.e., >0.3 µm in diameter), mimivirus, opened a new era of environmental virology, now incorporating protozoan-infecting viruses. Planet-wide isolation studies and metagenome analyses have shown the presence of giant viruses in most terrestrial and aquatic environments, including upper Pleistocene frozen soils. Those systematic surveys have led authors to propose several new distinct families, including the Mimiviridae, Marseilleviridae, Faustoviridae, Pandoraviridae, and Pithoviridae We now propose to introduce one additional family, the Molliviridae, following the description of M. kamchatka, the first modern relative of M. sibericum, previously isolated from 30,000-year-old arctic permafrost.


Assuntos
Vírus Gigantes/classificação , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Filogenia , Acanthamoeba/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Genoma Viral , Genômica , Vírus Gigantes/ultraestrutura , Mimiviridae/classificação , Mimiviridae/genética , Federação Russa , Microbiologia do Solo , Vírion/genética , Vírion/ultraestrutura , Vírus não Classificados/classificação , Vírus não Classificados/genética , Vírus não Classificados/isolamento & purificação
8.
ISME J ; 14(3): 727-739, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31822788

RESUMO

Acanthamoeba-infecting Mimiviridae are giant viruses with dsDNA genome up to 1.5 Mb. They build viral factories in the host cytoplasm in which the nuclear-like virus-encoded functions take place. They are themselves the target of infections by 20-kb-dsDNA virophages, replicating in the giant virus factories and can also be found associated with 7-kb-DNA episomes, dubbed transpovirons. Here we isolated a virophage (Zamilon vitis) and two transpovirons respectively associated to B- and C-clade mimiviruses. We found that the virophage could transfer each transpoviron provided the host viruses were devoid of a resident transpoviron (permissive effect). If not, only the resident transpoviron originally isolated from the corresponding virus was replicated and propagated within the virophage progeny (dominance effect). Although B- and C-clade viruses devoid of transpoviron could replicate each transpoviron, they did it with a lower efficiency across clades, suggesting an ongoing process of adaptive co-evolution. We analysed the proteomes of host viruses and virophage particles in search of proteins involved in this adaptation process. This study also highlights a unique example of intricate commensalism in the viral world, where the transpoviron uses the virophage to propagate and where the Zamilon virophage and the transpoviron depend on the giant virus to replicate, without affecting its infectious cycle.


Assuntos
Acanthamoeba/virologia , Mimiviridae/fisiologia , Vírus Gigantes/genética , Vírus Gigantes/fisiologia , Mimiviridae/genética , Mimiviridae/crescimento & desenvolvimento , Mimiviridae/isolamento & purificação , Simbiose , Virófagos/genética , Virófagos/fisiologia
9.
Front Microbiol ; 10: 430, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906288

RESUMO

With genomes of up to 2.7 Mb propagated in µm-long oblong particles and initially predicted to encode more than 2000 proteins, members of the Pandoraviridae family display the most extreme features of the known viral world. The mere existence of such giant viruses raises fundamental questions about their origin and the processes governing their evolution. A previous analysis of six newly available isolates, independently confirmed by a study including three others, established that the Pandoraviridae pan-genome is open, meaning that each new strain exhibits protein-coding genes not previously identified in other family members. With an average increment of about 60 proteins, the gene repertoire shows no sign of reaching a limit and remains largely coding for proteins without recognizable homologs in other viruses or cells (ORFans). To explain these results, we proposed that most new protein-coding genes were created de novo, from pre-existing non-coding regions of the G+C rich pandoravirus genomes. The comparison of the gene content of a new isolate, pandoravirus celtis, closely related (96% identical genome) to the previously described p. quercus is now used to test this hypothesis by studying genomic changes in a microevolution range. Our results confirm that the differences between these two similar gene contents mostly consist of protein-coding genes without known homologs, with statistical signatures close to that of intergenic regions. These newborn proteins are under slight negative selection, perhaps to maintain stable folds and prevent protein aggregation pending the eventual emergence of fitness-increasing functions. Our study also unraveled several insertion events mediated by a transposase of the hAT family, 3 copies of which are found in p. celtis and are presumably active. Members of the Pandoraviridae are presently the first viruses known to encode this type of transposase.

10.
Nat Commun ; 9(1): 2285, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29891839

RESUMO

With DNA genomes reaching 2.5 Mb packed in particles of bacterium-like shape and dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now used to perform the first comparative genomics analysis of the emerging worldwide-distributed Pandoraviridae family. Thorough annotation of the genomes combining transcriptomic, proteomic, and bioinformatic analyses reveals many non-coding transcripts and significantly reduces the former set of predicted protein-coding genes. Here we show that the pandoraviruses exhibit an open pan-genome, the enormous size of which is not adequately explained by gene duplications or horizontal transfers. As most of the strain-specific genes have no extant homolog and exhibit statistical features comparable to intergenic regions, we suggest that de novo gene creation could contribute to the evolution of the giant pandoravirus genomes.


Assuntos
Acanthamoeba/virologia , Vírus de DNA/classificação , Vírus de DNA/genética , Vírus de DNA/fisiologia , DNA Viral/genética , Microbiologia Ambiental , Evolução Molecular , Duplicação Gênica , Transferência Genética Horizontal , Variação Genética , Genoma Viral , Anotação de Sequência Molecular , Filogenia , Proteômica , Análise de Sequência de DNA , Vírion/ultraestrutura , Replicação Viral
11.
Proc Natl Acad Sci U S A ; 112(38): E5327-35, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26351664

RESUMO

Acanthamoeba species are infected by the largest known DNA viruses. These include icosahedral Mimiviruses, amphora-shaped Pandoraviruses, and Pithovirus sibericum, the latter one isolated from 30,000-y-old permafrost. Mollivirus sibericum, a fourth type of giant virus, was isolated from the same permafrost sample. Its approximately spherical virion (0.6-µm diameter) encloses a 651-kb GC-rich genome encoding 523 proteins of which 64% are ORFans; 16% have their closest homolog in Pandoraviruses and 10% in Acanthamoeba castellanii probably through horizontal gene transfer. The Mollivirus nucleocytoplasmic replication cycle was analyzed using a combination of "omic" approaches that revealed how the virus highjacks its host machinery to actively replicate. Surprisingly, the host's ribosomal proteins are packaged in the virion. Metagenomic analysis of the permafrost sample uncovered the presence of both viruses, yet in very low amount. The fact that two different viruses retain their infectivity in prehistorical permafrost layers should be of concern in a context of global warming. Giant viruses' diversity remains to be fully explored.


Assuntos
Acanthamoeba/virologia , Vírus/genética , Acanthamoeba castellanii/virologia , Evolução Biológica , Clonagem Molecular , Biologia Computacional , Replicação do DNA , Biblioteca Gênica , Transferência Genética Horizontal , Genoma Viral , Genômica , Aquecimento Global , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Família Multigênica , Pergelissolo , Filogenia , Proteoma , Proteômica/métodos , Análise de Sequência de DNA , Proteínas Virais/genética , Vírion/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA