Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomater Adv ; 146: 213300, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36708684

RESUMO

The therapy of life-threatening fungal infections is limited and needs urgent improvement. This is in part due to toxic side effects of clinically used antifungal compounds or their limited delivery to fungal structures. Until today, it is a matter of debate how drugs or drug-delivery systems can efficiently reach the intracellular lumen of fungal cells and how this can be improved. Here, we addressed both questions by applying two different polymeric particles for delivery of compounds. Their formulation was based on two biocompatible polymers, i.e., poly(lactic-co-glycolic acid)50:50 and poly(methyl methacrylate-stat-methacrylic acid)90:10 yielding particles with hydrodynamic diameters ranging from 100 to 300 nm. The polymers were covalently labeled with the fluorescent dye DY-550 to monitor the interaction between particles and fungi by confocal laser scanning microscopy. Furthermore, the fluorescent dye coumarin-6 and the antifungal drug itraconazole were successfully encapsulated in particles to study the fate of both the cargo and the particle when interacting with the clinically most important human-pathogenic fungi Aspergillus fumigatus, A. terreus, Candida albicans, and Cryptococcus neoformans. While the polymers were exclusively located on the fungal surface, the encapsulated cargo was efficiently transported into fungal hyphae, indicated by increased intracellular fluorescence signals due to coumarin-6. In accordance with this finding, compared to the pristine drug a reduced minimal inhibitory concentration for itraconazole was determined, when it was encapsulated. Together, the herein used polymeric particles were not internalized by pathogenic fungi but were able to efficiently deliver hydrophobic cargos into fungal cells.


Assuntos
Antifúngicos , Itraconazol , Humanos , Antifúngicos/farmacologia , Itraconazol/farmacologia , Polímeros/farmacologia , Corantes Fluorescentes , Candida albicans
2.
Appl Microbiol Biotechnol ; 107(2-3): 819-834, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36480041

RESUMO

Conidia of the airborne human-pathogenic fungus Aspergillus fumigatus are inhaled by humans. In the lung, they are phagocytosed by alveolar macrophages and intracellularly processed. In macrophages, however, conidia can interfere with the maturation of phagolysosomes to avoid their elimination. To investigate whether polymeric particles (PPs) can reach this intracellular pathogen in macrophages, we formulated dye-labeled PPs with a size allowing for their phagocytosis. PPs were efficiently taken up by RAW 264.7 macrophages and were found in phagolysosomes. When macrophages were infected with conidia prior to the addition of PPs, we found that they co-localized in the same phagolysosomes. Mechanistically, the fusion of phagolysosomes containing PPs with phagolysosomes containing conidia was observed. Increasing concentrations of PPs increased fusion events, resulting in 14% of phagolysosomes containing both conidia and PPs. We demonstrate that PPs can reach conidia-containing phagolysosomes, making these particles a promising carrier system for antimicrobial drugs to target intracellular pathogens. KEY POINTS: • Polymer particles of a size larger than 500 nm are internalized by macrophages and localized in phagolysosomes. • These particles can be delivered to Aspergillus fumigatus conidia-containing phagolysosomes of macrophages. • Enhanced phagolysosome fusion by the use of vacuolin1 can increase particle delivery.


Assuntos
Aspergillus fumigatus , Fagossomos , Humanos , Esporos Fúngicos , Macrófagos/microbiologia , Fagocitose
3.
Biomacromolecules ; 21(6): 2104-2115, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32286800

RESUMO

We describe the synthesis of hydrophilic poly(poly(ethylene glycol) methyl ether methacrylate) (PmPEGMA) and hydrophobic poly(methyl methacrylate) (PMMA) caspofungin conjugates by a post-polymerization modification of copolymers containing 10 mol % pentafluorophenyl methacrylate (PFPMA), which were obtained via reversible addition-fragmentation chain transfer copolymerization. The coupling of the clinically used antifungal caspofungin was confirmed and quantified in detail by a combination of 1H-, 19F- and diffusion-ordered NMR spectroscopy, UV-vis spectroscopy, and size exclusion chromatography. The trifunctional amine-containing antifungal was attached via several amide bonds to the hydrophobic PMMA, but sterical hindrance induced by the mPEGMA side chains prohibited intramolecular double functionalization. Both polymer-drug conjugates revealed activity against important human-pathogenic fungi, that is, two strains of Aspergillus fumigatus and one strain of Candida albicans (2.5 mg L-1 < MEC < 8 mg L-1, MIC50 = 4 mg L-1), whereas RAW 264.7 macrophages as well as HeLa cells remained unaffected at these concentrations.


Assuntos
Antifúngicos , Ácidos Polimetacrílicos , Antifúngicos/farmacologia , Caspofungina , Células HeLa , Humanos
4.
Macromol Rapid Commun ; 41(1): e1900560, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31793732

RESUMO

This review summarizes the current literature regarding stereocomplexation of different polyesters based on α- as well as ß-hydroxy acids beyond the well-known poly(lactic acid). Representing the initial step toward stereocomplexation, synthetic approaches needed to obtain and analyze isotactic polyesters are summarized. The basic technologies for the preparation and characterization of the respective stereocomplexes (SCs) are described, and published material properties are related to the structure of the respective polyesters. The variety of available SC materials is very limited despite the multiple options provided by state-of-the-art stereoselective monomer synthesis and polymerization methods. A combination of knowledge from the three scientific areas (i.e., organic chemistry, synthetic macromolecular chemistry, and materials science) thus has enormous potential to create novel materials with additional features enabled by the introduction of functional moieties to such materials besides the adjustment of thermal as well as mechanical properties.


Assuntos
Poliésteres/química , Materiais Biocompatíveis/química , Reação de Cicloadição , Hidroxiácidos/química , Poliésteres/síntese química , Polimerização , Estereoisomerismo
5.
Angew Chem Int Ed Engl ; 57(9): 2479-2482, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29214708

RESUMO

A benzoin-derived diol linker was synthesized and used to generate biocompatible polyesters that can be fully decomposed on demand upon UV irradiation. Extensive structural optimization of the linker unit was performed to enable the defined encapsulation of diverse organic compounds in the polymeric structures and allow for a well-controllable polymer cleavage process. Selective tracking of the release kinetics of encapsulated model compounds from the polymeric nano- and microparticle containers was performed by confocal laser scanning microscopy in a proof-of-principle study. The physicochemical properties of the incorporated and released model compounds ranged from fully hydrophilic to fully hydrophobic. The demonstrated biocompatibility of the utilized polyesters and degradation products enables their use in advanced applications, for example, for the smart packaging of UV-sensitive pharmaceuticals, nutritional components, or even in the area of spatially selective self-healing processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA