Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Vaccine ; 42(23): 126071, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-38890105

RESUMO

The first dengue "endgame" summit was held in Syracuse, NY over August 9 and 10, 2023. Organized and hosted by the Institute for Global Health and Translational Sciences at SUNY Upstate Medical University, the gathering brought together researchers, clinicians, drug and vaccine developers, government officials, and other key stakeholders in the dengue field for a highly collaborative and discussion-oriented event. The objective of the gathering was to discuss the current state of dengue around the world, what dengue "control" might look like, and what a potential roadmap might look like to achieve functional dengue control. Over the course of 7 sessions, speakers with a diverse array of expertise highlighted both current and historic challenges associated with dengue control, the state of dengue countermeasure development and deployment, as well as fundamental virologic, immunologic, and medical barriers to achieving dengue control. While sustained eradication of dengue was considered challenging, attendees were optimistic that significant reduction in the burden of dengue can be achieved by integration of vector control with effective application of therapeutics and vaccines.


Assuntos
Vacinas contra Dengue , Dengue , Dengue/prevenção & controle , Dengue/epidemiologia , Humanos , Vacinas contra Dengue/administração & dosagem , Saúde Global , Animais , Controle de Mosquitos/métodos , Vírus da Dengue/imunologia
2.
PNAS Nexus ; 2(3): pgad024, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36909820

RESUMO

Transmission heterogeneity, whereby a disproportionate fraction of pathogen transmission events result from a small number of individuals or geographic locations, is an inherent property of many, if not most, infectious disease systems. For vector-borne diseases, transmission heterogeneity is inferred from the distribution of the number of vectors per host, which could lead to significant bias in situations where vector abundance and transmission risk at the household do not correlate, as is the case with dengue virus (DENV). We used data from a contact tracing study to quantify the distribution of DENV acute infections within human activity spaces (AS), the collection of residential locations an individual routinely visits, and quantified measures of virus transmission heterogeneity from two consecutive dengue outbreaks (DENV-4 and DENV-2) that occurred in the city of Iquitos, Peru. Negative-binomial distributions and Pareto fractions showed evidence of strong overdispersion in the number of DENV infections by AS and identified super-spreading units (SSUs): i.e. AS where most infections occurred. Approximately 8% of AS were identified as SSUs, contributing to more than 50% of DENV infections. SSU occurrence was associated more with DENV-2 infection than with DENV-4, a predominance of inapparent infections (74% of all infections), households with high Aedes aegypti mosquito abundance, and high host susceptibility to the circulating DENV serotype. Marked heterogeneity in dengue case distribution, and the role of inapparent infections in defining it, highlight major challenges faced by reactive interventions if those transmission units contributing the most to transmission are not identified, prioritized, and effectively treated.

3.
Vaccine ; 41(1): 182-192, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36424258

RESUMO

In recent decades, there has been an increased interest in developing a vaccine for chikungunya. However, due to its unpredictable transmission, planning for a chikungunya vaccine trial is challenging. To inform decision making on the selection of sites for a vaccine efficacy trial, we developed a new framework for projecting the expected number of endpoint events at a given site. In this framework, we first accounted for population immunity using serological data collated from a systematic review and used it to estimate parameters related to the timing and size of past outbreaks, as predicted by an SIR transmission model. Then, we used that model to project the infection attack rate of a hypothetical future outbreak, in the event that one were to occur at the time of a future trial. This informed projections of how many endpoint events could be expected if a trial were to take place at that site. Our results suggest that some sites may have sufficient transmission potential and susceptibility to support future vaccine trials, in the event that an outbreak were to occur at those sites. In general, we conclude that sites that have experienced outbreaks within the past 10 years may be poorer targets for chikungunya vaccine efficacy trials in the near future. Our framework also generates projections of the numbers of endpoint events by age, which could inform study participant recruitment efforts.


Assuntos
Febre de Chikungunya , Vacinas , Humanos , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/prevenção & controle , Previsões , Surtos de Doenças/prevenção & controle
4.
R Soc Open Sci ; 9(10): 220829, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36277835

RESUMO

Though instances of arthropod-borne (arbo)virus co-infection have been documented clinically, the overall incidence of arbovirus co-infection and its drivers are not well understood. Now that dengue, Zika and chikungunya viruses are all in circulation across tropical and subtropical regions of the Americas, it is important to understand the environmental and biological conditions that make co-infections more likely to occur. To understand this, we developed a mathematical model of co-circulation of two arboviruses, with transmission parameters approximating dengue, Zika and/or chikungunya viruses, and co-infection possible in both humans and mosquitoes. We examined the influence of seasonal timing of arbovirus co-circulation on the extent of co-infection. By undertaking a sensitivity analysis of this model, we examined how biological factors interact with seasonality to determine arbovirus co-infection transmission and prevalence. We found that temporal synchrony of the co-infecting viruses and average temperature were the most influential drivers of co-infection incidence. Our model highlights the synergistic effect of co-transmission from mosquitoes, which leads to more than double the number of co-infections than would be expected in a scenario without co-transmission. Our results suggest that appreciable numbers of co-infections are unlikely to occur except in tropical climates when the viruses co-occur in time and space.

5.
Malar J ; 20(1): 479, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930278

RESUMO

BACKGROUND: Plasmodium vivax blood-stage relapses originating from re-activating hypnozoites are a major barrier for control and elimination of this disease. Radical cure is a form of therapy capable of addressing this problem. Recent clinical trials of radical cure have yielded efficacy estimates ranging from 65 to 94%, with substantial variation across trial sites. METHODS: An analysis of simulated trial data using a transmission model was performed to demonstrate that variation in efficacy estimates across trial sites can arise from differences in the conditions under which trials are conducted. RESULTS: The analysis revealed that differences in transmission intensity, heterogeneous exposure and relapse rate can yield efficacy estimates ranging as widely as 12-78%, despite simulating trial data under the uniform assumption that treatment had a 75% chance of clearing hypnozoites. A longer duration of prophylaxis leads to a greater measured efficacy, particularly at higher transmission intensities, making the comparison between the protection of different radical cure treatment regimens against relapse more challenging. Simulations show that vector control and parasite genotyping offer two potential means to yield more standardized efficacy estimates that better reflect prevention of relapse. CONCLUSIONS: Site-specific biases are likely to contribute to variation in efficacy estimates both within and across clinical trials. Future clinical trials can reduce site-specific biases by conducting trials in low-transmission settings where re-infections from mosquito bite are less common, by preventing re-infections using vector control measures, or by identifying and excluding likely re-infections that occur during follow-up, by using parasite genotyping methods.


Assuntos
Ensaios Clínicos como Assunto/estatística & dados numéricos , Malária Vivax/prevenção & controle , Plasmodium vivax/efeitos dos fármacos , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Geografia , Humanos , Pessoa de Meia-Idade , Modelos Teóricos , Adulto Jovem
6.
BMC Med ; 16(1): 241, 2018 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-30591060

RESUMO

The original article [1] contained an error in the presentation of Figure 1; this error has now been rectified and Figure 1 is now presented correctly.

7.
BMC Med ; 16(1): 190, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30333020

RESUMO

BACKGROUND: Recent global progress in scaling up malaria control interventions has revived the goal of complete elimination in many countries. Decreasing transmission intensity generally leads to increasingly patchy spatial patterns of malaria transmission in elimination settings, with control programs having to accurately identify remaining foci in order to efficiently target interventions. FINDINGS: The role of connectivity between different pockets of local transmission is of increasing importance as programs near elimination since humans are able to transfer parasites beyond the limits of mosquito dispersal, thus re-introducing parasites to previously malaria-free regions. Here, we discuss recent advances in the quantification of spatial epidemiology of malaria, particularly Plasmodium falciparum, in the context of transmission reduction interventions. Further, we highlight the challenges and promising directions for the development of integrated mapping, modeling, and genomic approaches that leverage disparate datasets to measure both connectivity and transmission. CONCLUSION: A more comprehensive understanding of the spatial transmission of malaria can be gained using a combination of parasite genetics and epidemiological modeling and mapping. However, additional molecular and quantitative methods are necessary to answer these public health-related questions.


Assuntos
Genômica/métodos , Malária/diagnóstico , Malária/genética , Parasitos/patogenicidade , Animais , Humanos , Malária/patologia , Malária Falciparum/epidemiologia
8.
Int Health ; 7(2): 121-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25733562

RESUMO

BACKGROUND: Standard advice regarding vector control is to prefer interventions that reduce the lifespan of adult mosquitoes. The basis for this advice is a decades-old sensitivity analysis of 'vectorial capacity', a concept relevant for most malaria transmission models and based solely on adult mosquito population dynamics. Recent advances in micro-simulation models offer an opportunity to expand the theory of vectorial capacity to include both adult and juvenile mosquito stages in the model. METHODS: In this study we revisit arguments about transmission and its sensitivity to mosquito bionomic parameters using an elasticity analysis of developed formulations of vectorial capacity. RESULTS: We show that reducing adult survival has effects on both adult and juvenile population size, which are significant for transmission and not accounted for in traditional formulations of vectorial capacity. The elasticity of these effects is dependent on various mosquito population parameters, which we explore. Overall, control is most sensitive to methods that affect adult mosquito mortality rates, followed by blood feeding frequency, human blood feeding habit, and lastly, to adult mosquito population density. CONCLUSIONS: These results emphasise more strongly than ever the sensitivity of transmission to adult mosquito mortality, but also suggest the high potential of combinations of interventions including larval source management. This must be done with caution, however, as policy requires a more careful consideration of costs, operational difficulties and policy goals in relation to baseline transmission.


Assuntos
Culicidae , Insetos Vetores , Estágios do Ciclo de Vida , Malária/prevenção & controle , Controle de Mosquitos , Dinâmica Populacional , Adulto , Animais , Anopheles , Ecologia , Política de Saúde , Humanos , Larva , Malária/transmissão , Modelos Biológicos , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA