Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Cells ; 13(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38391925

RESUMO

Heparan sulphate (HS) can act as a co-receptor on the cell surface and alterations in this process underpin many pathological conditions. We have previously described the usefulness of mimics of HS (glycomimetics) in protection against ß-glycerophosphate-induced vascular calcification and in the restoration of the functional capacity of diabetic endothelial colony-forming cells in vitro. This study aims to investigate whether our novel glycomimetic compounds can attenuate glycated low-density lipoprotein (g-LDL)-induced calcification by inhibiting RAGE signalling within the context of critical limb ischemia (CLI). We used an established osteogenic in vitro vascular smooth muscle cell (VSMC) model. Osteoprotegerin (OPG), sclerostin and glycation levels were all significantly increased in CLI serum compared to healthy controls, while the vascular calcification marker osteocalcin (OCN) was down-regulated in CLI patients vs. controls. Incubation with both CLI serum and g-LDL (10 µg/mL) significantly increased VSMC calcification vs. controls after 21 days, with CLI serum-induced calcification apparent after only 10 days. Glycomimetics (C2 and C3) significantly inhibited g-LDL and CLI serum-induced mineralisation, as shown by a reduction in alizarin red (AR) staining and alkaline phosphatase (ALP) activity. Furthermore, secretion of the osteogenic marker OCN was significantly reduced in VSMCs incubated with CLI serum in the presence of glycomimetics. Phosphorylation of cyclic AMP response element-binding protein (CREB) was significantly increased in g-LDL-treated cells vs. untreated controls, which was attenuated with glycomimetics. Blocking CREB activation with a pharmacological inhibitor 666-15 replicated the protective effects of glycomimetics, evidenced by elevated AR staining. In silico molecular docking simulations revealed the binding affinity of the glycomimetics C2 and C3 with the V domain of RAGE. In conclusion, these findings demonstrate that novel glycomimetics, C2 and C3 have potent anti-calcification properties in vitro, inhibiting both g-LDL and CLI serum-induced VSMC mineralisation via the inhibition of LDLR, RAGE, CREB and subsequent expression of the downstream osteogenic markers, ALP and OCN.


Assuntos
Lipoproteínas LDL , Calcificação Vascular , Humanos , Lipoproteínas LDL/efeitos adversos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Simulação de Acoplamento Molecular , Células Cultivadas , Calcificação Vascular/metabolismo
2.
RSC Med Chem ; 12(5): 779-790, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124676

RESUMO

The conceptual technology of small molecule glycomimetics, exemplified by compounds C1-4, has shown promising protective effects against lipid-induced endothelial dysfunction, restorative effects on diabetic endothelial colony forming cells, and preventative effects on downstream vascular calcification amongst other important in vitro and ex vivo studies. We report the optimised synthesis of an array of 17 small molecule glycomimetics, including the regio-, enantio- and diastereo-meric sulfated scaffolds of a hit structure along with novel desulfated examples. For the first time, the absolute stereochemical configurations of C1-4 have been clarified based on an identified and consistent anomaly with the Sharpless asymmetric dihydroxylation reaction. We have investigated the role and importance of sulfation pattern, location, regioisomers, and spatial orientation of distal sulfate groups on the modulation of endothelial dysfunction through their interaction with hepatocyte growth factor (HGF). In silico studies demonstrated the key interactions the persulfated glycomimetics make with HGF and revealed the importance of both sulfate density and positioning (both point chirality and vector) to biological activity. In vitro biological data of the most efficient binding motifs, along with desulfated comparators, support the modulatory effects of sulfated small molecule glycomimetics in the downstream signaling cascade of endothelial dysfunction. In vitro absorption, distribution, metabolism, elimination and toxicity (ADMET) data demonstrate the glycomimetic approach to be a promising approach for hit-to-lead studies.

3.
Cardiovasc Res ; 117(3): 836-849, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-32402066

RESUMO

AIMS: Vascular calcification is a recognized predictor of cardiovascular risk in the diabetic patient, with DNA damage and accelerated senescence linked to oxidative stress-associated pathological calcification. Having previously shown that systemic SIRT1 is reduced in diabetes, the aim was to establish whether SIRT1 is protective against a DNA damage-induced senescent and calcified phenotype in diabetic vascular smooth muscle cells (vSMCs). METHODS AND RESULTS: Immunohistochemistry revealed decreased SIRT1 and increased DNA damage marker expression in diabetic calcified arteries compared to non-diabetic and non-calcified controls, strengthened by findings that vSMCs isolated from diabetic patients show elevated DNA damage and senescence, assessed by the Comet assay and telomere length. Hyperglycaemic conditions were used and induced DNA damage and enhanced senescence in vSMCs in vitro. Using H2O2 as a model of oxidative stress-induced DNA damage, pharmacological activation of SIRT1 reduced H2O2 DNA damage-induced calcification, prevented not only DNA damage, as shown by reduced comet tail length, but also decreased yH2AX foci formation, and attenuated calcification. While Ataxia Telanglectasia Mutated (ATM) expression was reduced following DNA damage, in contrast, SIRT1 activation significantly increased ATM expression, phosphorylating both MRE11 and NBS1, thus allowing formation of the MRN complex and increasing activation of the DNA repair pathway. CONCLUSION: DNA damage-induced calcification is accelerated within a diabetic environment and can be attenuated in vitro by SIRT1 activation. This occurs through enhancement of the MRN repair complex within vSMCs and has therapeutic potential within the diabetic patient.


Assuntos
Dano ao DNA , Diabetes Mellitus/enzimologia , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Sirtuína 1/deficiência , Calcificação Vascular/enzimologia , Hidrolases Anidrido Ácido/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cloreto de Cálcio/toxicidade , Estudos de Casos e Controles , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Senescência Celular , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/patologia , Progressão da Doença , Glucose/toxicidade , Histonas/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Proteína Homóloga a MRE11/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Proteínas Nucleares/metabolismo , Osteogênese , Fenótipo , Fosforilação , Artéria Poplítea/efeitos dos fármacos , Artéria Poplítea/enzimologia , Artéria Poplítea/patologia , Transdução de Sinais , Sirtuína 1/genética , Fatores de Tempo , Calcificação Vascular/genética , Calcificação Vascular/patologia
4.
Nephron ; 143(4): 234-242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31514183

RESUMO

BACKGROUND: Progressive chronic kidney disease (CKD) inevitably leads to salt and water retention and disturbances in the macro-and microcirculation. OBJECTIVES: We hypothesize that salt and water dysregulation in advanced CKD may be linked to inflammation and microvascular injury pathways. METHODS: We studied 23 CKD stage 5 patients and 11 healthy controls (HC). Tissue sodium concentration was assessed using 23Sodium magnetic resonance (MR) imaging. Hydration status was evaluated using bioimpedance spectroscopy. A panel of inflammatory and endothelial biomarkers was also measured. RESULTS: CKD patients had fluid overload (FO) when compared to HC (overhydration index: CKD = 0.5 ± 1.9 L vs. HC = -0.5 ± 1.0 L; p = 0.03). MR-derived tissue sodium concentrations were predominantly higher in the subcutaneous (SC) compartment (median [interquartile range] CKD = 22.4 mmol/L [19.4-31.3] vs. HC = 18.4 mmol/L [16.6-21.3]; p = 0.03), but not the muscle (CKD = 24.9 ± 5.5 mmol/L vs. HC = 22.8 ± 2.5 mmol/L; p = 0.26). Tissue sodium in both compartments correlated to FO (muscle: r = 0.63, p < 0.01; SC: rs = 0.63, p < 0.01). CKD subjects had elevated levels of vascular cell adhesion molecule (p < 0.05), tumor necrosis factor-alpha (p < 0.01), and interleukin (IL)-6 (p = 0.01) and lower levels of vascular endothelial growth factor-C (p = 0.04). FO in CKD was linked to higher IL-8 (r = 0.51, p < 0.05) and inversely associated to E-selectin (r = -0.52, p = 0.01). Higher SC sodium was linked to higher intracellular adhesion molecule (ICAM; rs = 0.54, p = 0.02). CONCLUSION: Salt and water accumulation in CKD appears to be linked with inflammation and endothelial activation pathways. Specifically IL-8, E-Selectin (in FO), and ICAM (in salt accumulation) may be implicated in the pathophysiology of FO and merit further investigation.


Assuntos
Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/fisiopatologia , Desequilíbrio Hidroeletrolítico/fisiopatologia , Adulto , Biomarcadores/sangue , Compartimentos de Líquidos Corporais/diagnóstico por imagem , Compartimentos de Líquidos Corporais/fisiologia , Estudos de Casos e Controles , Estudos Transversais , Endotélio Vascular/lesões , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Feminino , Humanos , Inflamação/diagnóstico por imagem , Inflamação/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/diagnóstico por imagem , Sódio/metabolismo , Desequilíbrio Hidroeletrolítico/diagnóstico por imagem
6.
Sci Rep ; 9(1): 2309, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783159

RESUMO

Endothelial colony forming progenitor cell (ECFC) function is compromised in diabetes, leading to poor vascular endothelial repair, which contributes to impaired diabetic foot ulcer healing. We have generated novel glycomimetic drugs with protective effects against endothelial dysfunction. We investigated the effect of glycomimetic C3 on the functional capacity of diabetic ECFCs. ECFCs were isolated from healthy controls and patients with diabetes with neuroischaemic (NI) or neuropathic (NP) foot ulcers. Functionally, diabetic ECFCs demonstrated delayed colony formation (p < 0.02), differential proliferative capacity (p < 0.001) and reduced NO bioavailability (NI ECFCs; p < 0.05). Chemokinetic migration and angiogenesis were also reduced in diabetic ECFCs (p < 0.01 and p < 0.001), and defects in wound closure and tube formation were apparent in NP ECFCs (p < 0.01). Differential patterns in mitochondrial activity were pronounced, with raised activity in NI and depressed activity in NP cells (p < 0.05). The application of glycomimetic improved scratch wound closure in vitro in patient ECFCs (p < 0.01), most significantly in NI cells (p < 0.001), where tube formation (p < 0.05) was also improved. We demonstrate restoration of the deficits in NI cells but not NP cells, using a novel glycomimetic agent, which may be advantageous for therapeutic cell transplantation or as a localised treatment for NI but not NP patients.


Assuntos
Células Progenitoras Endoteliais/citologia , Células Progenitoras Endoteliais/metabolismo , Idoso , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Progenitoras Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Fisiológica/fisiologia
8.
Lupus Sci Med ; 5(1): e000267, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30538814

RESUMO

OBJECTIVES: We aimed to describe the rate and determinants of carotid plaque progression and the onset of clinical cardiovascular disease (CVD) in a UK SLE cohort. METHODS: Female patients with SLE of white British ancestry were recruited from clinics in the North-West of England and had a baseline clinical and CVD risk assessment including measurement of carotid intima-media thickness (CIMT) and plaque using B-mode Doppler ultrasound. Patients were followed up (>3.5 years after baseline visit) and had a repeat carotid Doppler to assess progression of plaque and CIMT. Clinical CVD events between visits were also noted. RESULTS: Of 200 patients with a baseline scan, 124 (62%) patients had a second assessment at a median (IQR) of 5.8 (5.2-6.3) years follow-up. New plaque developed in 32 (26%) (4.5% per annum) patients and plaque progression was observed in 52 (41%) patients. Factors associated with plaque progression were older age (OR 1.13; 95% CI 1.06 to 1.20), anticardiolipin (OR 3.36; 1.27 to 10.40) and anti-Ro (OR 0.31; 0.11 to 0.86) antibodies. CVD events occurred in 7.2% over 5.8 years compared with 1.0% predicted using the Framingham risk score (p<0.001). Higher triglycerides (OR 3.6; 1.23 to 10.56), cyclophosphamide exposure 'ever' (OR 16.7; 1.46 to 63.5) and baseline Systemic Lupus International Collaborating Clinics damage index score (OR 9.62; 1.46 to 123) independently predicted future CVD events. CONCLUSION: Accelerated atherosclerosis remains a major challenge in SLE disease management. A more comprehensive approach to CVD risk management taking into account disease factors such as severity and anticardiolipin antibody status may be necessary to improve CVD outcomes in this high-risk population.

9.
Lupus Sci Med ; 5(1): e000272, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30167314

RESUMO

OBJECTIVE: 10-year cardiovascular disease (CVD) risk scores are calculated using algorithms, including Framingham (worldwide) and QRISK2 (UK). Recently, an updated QRISK3 model was introduced, which considers new variables including SLE and steroid prescription, not included in QRISK2 and Framingham algorithms. We sought to determine the extent to which QRISK3 improves identification of high-risk patients with SLE and whether the score relates to standard and novel markers of SLE-specific endothelial dysfunction. METHODS: Framingham and QRISK2/3 scores were calculated in patients with SLE (n=109) and healthy controls (n=29) using clinical measures. In a smaller cohort (n=58), markers of inflammation and endothelial dysfunction, including CD144+ endothelial microvesicles (EMVs), triglycerides, vascular cell adhesion molecule (VCAM) and high-sensitivity C reactive protein (hsCRP) were quantified by flow cytometry and ELISA, respectively. RESULTS: Patients with SLE demonstrated significantly higher QRISK3 scores than controls (5.0%vs0.3%, p<0.001). 21/109 patients with SLE (19%) and 24/109(22%) were newly identified as being at high risk of a CV event when using QRISK3 versus QRISK2 (29vs8patients) and QRISK3 versus Framingham (29vs5patients; p<0.001), respectively. These 'new QRISK3' patients with SLE were more likely to have lupus nephritis, be anticardiolipin antibody positive, currently prescribed corticosteroids, had a higher Body Mass Index and systolic blood pressure (BP) than low-risk patients with SLE. Rates of antiplatelet (8/21) and statin use (5/21) were low in the new QRISK3 group. EMVs, hsCRP and triglyceride levels were significantly higher in new QRISK3 patientscompared with low-risk patients with SLE (p<0.05). Furthermore, pulse wave velocity and VCAM were significantly elevated in all high versus low QRISK3 patients. CONCLUSIONS: QRISK3 captures significantly more patients with SLE with an elevated 10-year risk of developing CVD, which is associated with measures of endothelial dysfunction; EMVs and systolic BP. The adoption of QRISK3 will enhance management of CVD risk in patients with SLE for improved outcome.

10.
Front Med (Lausanne) ; 5: 200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042945

RESUMO

Over the past decade, we have witnessed an exponential growth of interest into the role of endothelial progenitor cells (EPCs) in cardiovascular disease. While the major thinking revolves around EPC angiogenic repair properties, we have used a hypothesis-driven approach to discover disease-related defects in their characteristics and based on these findings, have identified opportunities for functional enhancement, which offer an exciting avenue for translation into clinical intervention. In this review, we focus on two groups; circulating myeloid angiogenic cells (MACs) and late outgrowth endothelial colony forming cells (ECFCs), and will discuss the unique properties and defects of each population, as new insights have been gained into the potential function of each sub-type using current techniques and multiomic technology. We will discuss their role in inflammatory disorders and alterations in mitochondrial function. In addition, we share key insights into the glycocalyx, and propose this network of membrane-bound proteoglycans and glycoproteins, covering the endothelium warrants further investigation in order to clarify its significance in ECFC regulation of vascularization and angiogenesis and ultimately for potential translational therapeutic aspects.

11.
Cytokine ; 105: 8-16, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29428804

RESUMO

In sepsis, trauma and major surgery, where an explicit physiological insult leads to a significant systemic inflammatory response, the acute evolution of biomarkers have been delineated. In these settings, Interleukin (IL) -6 and TNF-α are often the first pro-inflammatory markers to rise, stimulating production of acute phase proteins followed by peaks in anti-inflammatory markers. Patients undergoing SPKT as a result of diabetic complications already have an inflammatory phenotype as a result of uraemia and glycaemia. How this inflammatory response is affected further by the trauma of major transplant surgery and how this may impact on graft survival is unknown, despite the recognised pro-inflammatory cytokines' detrimental effects on islet cell function. The aim of the study was to determine the evolution of biomarkers in omentum and serum in the peri-operative period following SPKT. The biochemical findings were correlated to clinical outcomes. Two omental biopsies were taken (at the beginning and end of surgery) and measured for CD68+ and CD206+ antibodies (M1 and M2 macrophages respectively). Serum was measured within the first 72 h post-SPKT for pro- and anti-inflammatory cytokines (IL -6, -10 and TNF-α), inflammatory markers (WCC and CRP) and endocrine markers (insulin, C-peptide, glucagon and resistin). 46 patients were recruited to the study. Levels of M1 (CD68+) and M2 (CD206+) macrophages were significantly raised at the end of surgery compared to the beginning (p = 0.003 and p < 0.001 respectively). Levels of C-peptide, insulin and glucagon were significantly raised 30 min post pancreas perfusion compared to baseline and were also significantly negatively related to prolonged cold ischaemic time (CIT) (p < 0.05). CRP levels correlated significantly with the Post-Operative Morbidity Survey (p < 0.05). The temporal inflammatory marker signature after SPKT is comparable to the pattern observed following other physiological insults. Unique to this study, we find that CIT is significantly related to early pancreatic endocrine function. In addition, this study suggests a predictive value of CRP in peri-operative morbidity following SPKT.


Assuntos
Biomarcadores/metabolismo , Isquemia Fria , Transplante de Rim , Transplante de Pâncreas , Adulto , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Omento/metabolismo , Alta do Paciente , Fatores de Tempo , Resultado do Tratamento
12.
FASEB J ; 31(10): 4636-4648, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28687612

RESUMO

Endothelial microparticles (EMPs) are endothelium-derived submicron vesicles that are released in response to diverse stimuli and are elevated in cardiovascular disease, which is correlated with risk factors. This study investigates the effect of EMPs on endothelial cell function and dysfunction in a model of free fatty acid (FFA) palmitate-induced oxidative stress. EMPs were generated from TNF-α-stimulated HUVECs and quantified by using flow cytometry. HUVECs were treated with and without palmitate in the presence or absence of EMPs. EMPs were found to carry functional eNOS and to protect against oxidative stress by positively regulating eNOS/Akt signaling, which restored NO production, increased superoxide dismutase and catalase, and suppressed NADPH oxidase and reactive oxygen species (ROS) production, with the involvement of NF-erythroid 2-related factor 2 and heme oxygenase-1. Conversely, under normal conditions, EMPs reduced NO release and increased ROS and redox-sensitive marker expression. In addition, functional assays using EMP-treated mouse aortic rings that were performed under homeostatic conditions demonstrated a decline in endothelium-dependent vasodilatation, but restored the functional response under lipid-induced oxidative stress. These data indicate that EMPs harbor functional eNOS and potentially play a role in the feedback loop of damage and repair during homeostasis, but are also effective in protecting against FFA-induced oxidative stress; thus, EMP function is reflected by the microenvironment.-Mahmoud, A. M., Wilkinson, F. L., McCarthy, E. M., Moreno-Martinez, D., Langford-Smith, A., Romero, M., Duarte, J., Alexander, M. Y. Endothelial microparticles prevent lipid-induced endothelial damage via Akt/eNOS signaling and reduced oxidative stress.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Endotélio Vascular/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Proteína Oncogênica v-akt/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Células Endoteliais/metabolismo , Humanos , Lipídeos/farmacologia , NADPH Oxidases/metabolismo , Vasodilatação/efeitos dos fármacos
13.
Nephron ; 135(4): 252-260, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28118643

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is associated with a unique milieu of vascular pathology, and effective biomarkers of active vascular damage are lacking. A candidate biomarker is the quantification of circulating endothelial microparticles (EMPs). This study observed baseline and longitudinal EMP change (δEMP) and established the association of these with all-cause mortality and cardiovascular events in CKD. METHOD: An observational study in adults with CKD (estimated glomerular filtration rate [eGFR] <60 mL/min/1.73 m2). EMPs were quantified by flow cytometry of platelet poor plasma in 2 samples 12 months apart and categorised as EMP if AnnexinV+/CD31+/CD42b- EMPs were compared between primary renal diagnoses, and correlations between EMP/δEMP and other parameters made. Adjusted hazard ratios (HRs) for time to all-cause mortality and cardiovascular events were calculated for log-transformed EMP and δEMP using a Cox proportional hazard model. RESULTS: There were 123 patients (age 63 ± 11 years, systolic blood pressure 135 ± 18 mm Hg, eGFR 32 ± 16 mL/min/1.73 m2). The median baseline EMP count was 144/µL (range 10-714/µL). EMPs were numerically the highest in autosomal dominant polycystic kidney disease (253 [41-610]). An increase in urine protein:creatinine ratio was associated with an increase in EMP (co-efficient 0.21, p = 0.02). The adjusted HR for all-cause mortality for EMP was 8.20 (1.67-40.2, p = 0.01) and for δEMP was 2.69 (0.04-165, p = 0.64). There was no association between EMP or δEMP and cardiovascular events. CONCLUSION: Although EMP count was a significant marker of mortality risk, longitudinal change was not. This may reflect disease-specific EMP behaviour and the limitation of EMP as a generalised biomarker in CKD.


Assuntos
Micropartículas Derivadas de Células/patologia , Insuficiência Renal Crônica/sangue , Insuficiência Renal Crônica/mortalidade , Idoso , Biomarcadores/sangue , Células Endoteliais/patologia , Feminino , Citometria de Fluxo , Taxa de Filtração Glomerular , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Insuficiência Renal Crônica/fisiopatologia , Fatores de Risco , Análise de Sobrevida , Reino Unido/epidemiologia
15.
Biochim Biophys Acta Gen Subj ; 1861(1 Pt A): 3311-3322, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27554845

RESUMO

BACKGROUND: Glycomimetics are a diverse array of saccharide-inspired compounds, designed to mimic the bioactive functions of glycosaminoglycans. Therefore, glycomimetics represent a unique source of novel therapies to target aberrant signaling and protein interactions in a wide range of diseases. We investigated the protective effects of four newly synthesized small molecule glycomimetics against lipid-induced endothelial dysfunction, with an emphasis on nitric oxide (NO) and oxidative stress. METHODS: Four aromatic sugar mimetics were synthesized by the stepwise transformation of 2,5-dihydroxybenzoic acid to derivatives (C1-C4) incorporating sulfate groups to mimic the structure of heparan sulfate. RESULTS: Glycomimetic-treated human umbilical vein endothelial cells (HUVECs) were exposed to palmitic acid to model lipid-induced oxidative stress. Palmitate-induced impairment of NO production was restored by the glycomimetics, through activation of Akt/eNOS signaling. Furthermore, C1-C4 significantly inhibited palmitate-induced reactive oxygen species (ROS) production, lipid peroxidation, and activity and expression of NADPH oxidase. These effects were attributed to activation of the Nrf2/ARE pathway and downstream activation of cellular antioxidant and cytoprotective proteins. In ex vivo vascular reactivity studies, the glycomimetics (C1-C4) also demonstrated a significant improvement in endothelium-dependent relaxation and decreased ROS production and NADPH oxidase activity in isolated mouse thoracic aortic rings exposed to palmitate. CONCLUSIONS: The small molecule glycomimetics, C1-C4, protect against lipid-induced endothelial dysfunction through up-regulation of Akt/eNOS and Nrf2/ARE signaling pathways. Thus, carbohydrate-derived therapeutics are a new class of glycomimetic drugs targeting endothelial dysfunction, regarded as the first line of defense against vascular complications in cardiovascular disease.


Assuntos
Endotélio Vascular/fisiopatologia , Lipídeos/toxicidade , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Elementos de Resposta Antioxidante/genética , Aorta/efeitos dos fármacos , Aorta/fisiopatologia , Sobrevivência Celular/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Modelos Biológicos , NADPH Oxidases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ácido Palmítico/farmacologia , Fosforilação/efeitos dos fármacos , Polissacarídeos/química , Substâncias Protetoras/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Bibliotecas de Moléculas Pequenas/química , Vasodilatação/efeitos dos fármacos
17.
Sci Rep ; 6: 22341, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26930567

RESUMO

Patients with systemic lupus erythematosus (SLE) have accelerated cardiovascular disease and dysfunctional endothelial repair mechanisms. Myeloid angiogenic cells (MACs), derived from circulating monocytes, augment vascular repair by paracrine secretion of pro-angiogenic factors. We observed that SLE MACs are dysfunctional and secrete pro-inflammatory cytokines. We also found that the vitamin D receptor was transiently expressed during MAC differentiation and that in vitro, calcitriol increased differentiation of monocytes into MACs in both SLE and in a model using the prototypic SLE cytokine, interferon-alpha. The active form of vitamin D (calcitriol) restored the SLE MAC phenotype towards that of healthy subjects with reduced IL-6 secretion, and normalised surface marker expression. Calcitriol also augmented the angiogenic capacity of MACs via the down-regulation of CXCL-10. In SLE patients treated with cholecalciferol for 12 weeks, the improvement in endothelial function correlated with increase in serum 25(OH)D concentrations independently of disease activity. We also show that MACs were able to positively modulate eNOS expression in human endothelial cells in vitro, an effect further enhanced by calcitriol treatment of SLE MACs. The results demonstrate that vitamin D can positively modify endothelial repair mechanisms and thus endothelial function in a population with significant cardiovascular risk.


Assuntos
Quimiocina CXCL10/metabolismo , Endotélio Vascular/fisiopatologia , Lúpus Eritematoso Sistêmico/metabolismo , Lúpus Eritematoso Sistêmico/fisiopatologia , Células Mieloides/patologia , Vitamina D/farmacologia , Adulto , Calcitriol/farmacologia , Adesão Celular/efeitos dos fármacos , Contagem de Células , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Humanos , Interferons/metabolismo , Pessoa de Meia-Idade , Modelos Biológicos , Células Mieloides/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo
18.
Sci Rep ; 5: 16658, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26564003

RESUMO

Endothelial microparticles (EMPs) are released from dysfunctional endothelial cells. We hypothesised that patients with unstable carotid plaque have higher levels of circulating microparticles compared to patients with stable plaques, and may correlate with serum markers of plaque instability and inflammation. Circulating EMPs, platelet MPs (PMPs) and inflammatory markers were measured in healthy controls and patients undergoing carotid endarterectomy. EMP/PMPs were quantified using flow cytometry. Bioplex assays profiled systemic inflammatory and bone-related proteins. Immunohistological analysis detailed the contribution of differentially-regulated systemic markers to plaque pathology. Alizarin red staining showed calcification. EMPs and PMPs were significantly higher in patients with carotid stenosis (≥ 70%) compared to controls, with no differences between asymptomatic vs symptomatic patients. Asymptomatic patients with unstable plaques exhibited higher levels of EMPs, CXCL9 and SCGF-ß compared to those with stable plaques. CXCL9, and SCGF-ß were detected within all plaques, suggesting a contribution to both localised and systemic inflammation. Osteopontin and osteoprotegerin were significantly elevated in the symptomatic vs asymptomatic group, while osteocalcin was higher in asymptomatic patients with stable plaque. All plaques exhibited calcification, which was significantly greater in asymptomatic patients. This may impact on plaque stability. These data could be important in identifying patients at most benefit from intervention.


Assuntos
Estenose das Carótidas/cirurgia , Micropartículas Derivadas de Células/metabolismo , Quimiocina CXCL9/sangue , Células Endoteliais/metabolismo , Fatores de Crescimento de Células Hematopoéticas/sangue , Lectinas Tipo C/sangue , Idoso , Idoso de 80 Anos ou mais , Estenose das Carótidas/sangue , Estenose das Carótidas/metabolismo , Citocinas/sangue , Endarterectomia das Carótidas , Feminino , Humanos , Mediadores da Inflamação/sangue , Masculino , Pessoa de Meia-Idade , Osteocalcina/sangue , Osteopontina/sangue , Osteoprotegerina/sangue
19.
Lancet ; 385 Suppl 1: S83, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26312905

RESUMO

BACKGROUND: Patients with systemic lupus erythematosus (SLE) have endothelial dysfunction and increased risk of cardiovascular disease. Endothelium-dependent dilatation (ED) is abnormal in patients with SLE, and endothelial repair mechanisms are also impaired. Myeloid angiogenic cells (MACs) promote angiogenesis to restore damaged vessels. Vitamin D deficiency is associated with cardiovascular disease in the general population and is prevalent in SLE. We aimed to assess the effect of vitamin D on endothelial repair and function. METHODS: Vitamin D deficient (<20 ng/mL) patients with SLE were treated with cholecalciferol by their physician. Vitamin D replete patients (>30 ng/mL) and healthy controls (>20 ng/mL) were also recruited. Endothelial function was determined by the ratio of ED to independent dilatation (EI). MACs from patients were cultured with and without 10 nM calcitriol, and function determined by migration and angiogenesis assays. Endothelial nitric oxide synthase (eNOS) expression was studied in human aortic endothelial cells treated with tumour necrosis factor α (TNFα) and MAC-conditioned media. FINDINGS: We studied 22 vitamin D deficient and 18 replete patients. Vitamin D deficient patients had an increased number of MACs compared with controls (p=0·04) but impaired migratory capacity (p=0·001) and reduced angiogenic capacity, although this was not statistically significant (p=0·13). Media from calcitriol-treated MACs significantly increased angiogenesis compared with untreated MACs (p=0·01). Calcitriol reduced IP-10 expression by MACs (p<0·0006), and blockade of IP-10 restored the angiogenic capacity of MACs from patients with SLE. In cholecalciferol-treated patients, change in 25-hydroxyvitamin D was strongly correlated with change in ED:EI (r=0·650, p=0·006) after adjustment for age (odds ratio 1·12, 95% CI 1·02-1·24; p=0·02). Media from calcitriol-treated MACs more strongly attenuated TNFα-mediated downregulation of eNOS in human aortic endothelial cells than did untreated MACs from patients with SLE (p=0·01). INTERPRETATION: In this small experimental study, calcitriol improved endothelial function in patients with stable SLE. This improvement was associated with an increase in MAC number and function. The improved angiogenic capacity in MACs might be mediated via downregulation of IP-10 and changes in ED:EI by MAC regulation of eNOS in endothelial cells. The findings suggest that vitamin D could be a novel therapy to reduce cardiovascular disease in this patient group. FUNDING: North West England Medical Research Council Fellowship Scheme in Clinical Pharmacology and Therapeutics (funding from UK Medical Research Council (grant number G1000417/94909), ICON, Astra Zeneca, GlaxoSmithKline, Medicines Evaluation Unit).

20.
Diabetologia ; 57(11): 2251-60, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25112376

RESUMO

Type 2 diabetes is associated with increased cardiovascular morbidity and mortality and early vascular ageing. This takes the form of atherosclerosis, with progressive vascular calcification being a major complication in the pathogenesis of this disease. Current research and drug targets in diabetes have hitherto focused on atherosclerosis, but vascular calcification is now recognised as an independent predictor of cardiovascular morbidity and mortality. An emerging regulatory pathway for vascular calcification in diabetes involves the receptor activator for nuclear factor κB (RANK), RANK ligand (RANKL) and osteoprotegerin (OPG). Important novel biomarkers of calcification are related to levels of glycation and inflammation in diabetes. Several therapeutic strategies could have advantageous effects on the vasculature in patients with diabetes, including targeting the RANKL and receptor for AGE (RAGE) signalling pathways, since there has been little success-at least in macrovascular outcomes-with conventional glucose-lowering therapy. There is substantial and relevant clinical and basic science evidence to suggest that modulating RANKL-RANK-OPG signalling, RAGE signalling and the associated proinflammatory milieu alters the natural course of cardiovascular complications and outcomes in people with diabetes. However, further research is critically needed to understand the precise mechanisms underpinning these pathways, in order to translate the anti-calcification strategies into patient benefit.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Ligante RANK/metabolismo , Receptores Imunológicos/metabolismo , Calcificação Vascular/metabolismo , Animais , Humanos , Osteoprotegerina/metabolismo , Receptor para Produtos Finais de Glicação Avançada , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA