RESUMO
Almost 400 years ago, Rubens copied Titian's The Fall of Man, albeit with important changes. Rubens altered Titian's original composition in numerous ways, including by changing the gaze directions of the depicted characters and adding a striking red parrot to the painting. Here, we quantify the impact of Rubens's choices on the viewer's gaze behavior. We displayed digital copies of Rubens's and Titian's artworks-as well as a version of Rubens's painting with the parrot digitally removed-on a computer screen while recording the eye movements produced by observers during free visual exploration of each image. To assess the effects of Rubens's changes to Titian's composition, we directly compared multiple gaze parameters across the different images. We found that participants gazed at Eve's face more frequently in Rubens's painting than in Titian's. In addition, gaze positions were more tightly focused for the former than for the latter, consistent with different allocations of viewer interest. We also investigated how gaze fixation on Eve's face affected the perceptual visibility of the parrot in Rubens's composition and how the parrot's presence versus its absence impacted gaze dynamics. Taken together, our results demonstrate that Rubens's critical deviations from Titian's painting have powerful effects on viewers' oculomotor behavior.
Assuntos
Pinturas , Papagaios , Masculino , Animais , Humanos , Movimentos Oculares , Atenção , Fixação OcularRESUMO
A guideline is proposed that comprises the minimum items to be reported in research studies involving an eye tracker and human or non-human primate participant(s). This guideline was developed over a 3-year period using a consensus-based process via an open invitation to the international eye tracking community. This guideline will be reviewed at maximum intervals of 4 years.
RESUMO
In this paper, we present a review of how the various aspects of any study using an eye tracker (such as the instrument, methodology, environment, participant, etc.) affect the quality of the recorded eye-tracking data and the obtained eye-movement and gaze measures. We take this review to represent the empirical foundation for reporting guidelines of any study involving an eye tracker. We compare this empirical foundation to five existing reporting guidelines and to a database of 207 published eye-tracking studies. We find that reporting guidelines vary substantially and do not match with actual reporting practices. We end by deriving a minimal, flexible reporting guideline based on empirical research (Section "An empirically based minimal reporting guideline").
Assuntos
Movimentos Oculares , Tecnologia de Rastreamento Ocular , Humanos , Pesquisa EmpíricaRESUMO
When we believe misinformation, we have succumbed to an illusion: our perception or interpretation of the world does not match reality. We often trust misinformation for reasons that are unrelated to an objective, critical interpretation of the available data: Key facts go unnoticed or unreported. Overwhelming information prevents the formulation of alternative explanations. Statements become more believable every time they are repeated. Events are reframed or given "spin" to mislead audiences. In magic shows, illusionists apply similar techniques to convince spectators that false and even seemingly impossible events have happened. Yet, many magicians are "honest liars," asking audiences to suspend their disbelief only during the performance, for the sole purpose of entertainment. Magic misdirection has been studied in the lab for over a century. Psychological research has sought to understand magic from a scientific perspective and to apply the tools of magic to the understanding of cognitive and perceptual processes. More recently, neuroscientific investigations have also explored the relationship between magic illusions and their underlying brain mechanisms. We propose that the insights gained from such studies can be applied to understanding the prevalence and success of misinformation. Here, we review some of the common factors in how people experience magic during a performance and are subject to misinformation in their daily lives. Considering these factors will be important in reducing misinformation and encouraging critical thinking in society.
RESUMO
Prior target knowledge (i.e., positive cues) improves visual search performance. However, there is considerable debate about whether distractor knowledge (i.e., negative cues) can guide search. Some studies suggest the active suppression of negatively cued search items, while others suggest the initial capture of attention by negatively cued items. Prior work has used pictorial or specific text cues but has not explicitly compared them. We build on that work by comparing positive and negative cues presented pictorially and as categorical text labels using photorealistic objects and eye movement measures. Search displays contained a target (cued on positive trials), a lure from the target category (cued on negative trials), and four categorically-unrelated distractors. Search performance with positive cues resulted in stronger attentional guidance and faster object recognition for pictorial relative to categorical cues (i.e., a pictorial advantage, suggesting specific visual details afforded by pictorial cues improved search). However, in most search performance metrics, negative cues mitigate the pictorial advantage. Given that the negatively cued items captured attention, generated target guidance but mitigated the pictorial advantage, these results are partly consistent with both existing theories. Specific visual details provided in positive cues produce a large pictorial advantage in all measures, whereas specific visual details in negative cues only produce a small pictorial advantage for object recognition but not for attentional guidance. This asymmetry in the pictorial advantage suggests that the down-weighting of specific negatively cued visual features is less efficient than the up-weighting of specific positively cued visual features.
Assuntos
Atenção , Sinais (Psicologia) , Movimentos Oculares , Humanos , Tempo de Reação , Percepção VisualRESUMO
For millennia, people have used "averted vision" to improve their detection of faint celestial objects, a technique first documented around 325 BCE. Yet, no studies have assessed gaze location during averted vision to determine what pattern best facilitates perception. Here, we characterized averted vision while recording eye-positions of dark-adapted human participants, for the first time. We simulated stars of apparent magnitudes 3.3 and 3.5, matching their brightness to Megrez (the dimmest star in the Big Dipper) and Tau Ceti. Participants indicated whether each star was visible from a series of fixation locations, providing a comprehensive map of detection performance in all directions. Contrary to prior predictions, maximum detection was first achieved at ~8° from the star, much closer to the fovea than expected from rod-cone distributions alone. These findings challenge the assumption of optimal detection at the rod density peak and provide the first systematic assessment of an age-old facet of human vision.
Assuntos
Visão Ocular , HumanosRESUMO
Errors in radiologic interpretation are largely the result of failures of perception. This remains true despite the increasing use of computer-aided detection and diagnosis. We surveyed the literature on visual illusions during the viewing of radiologic images. Misperception of anatomical structures is a potential cause of error that can lead to patient harm if disease is seen when none is present. However, visual illusions can also help enhance the ability of radiologists to detect and characterize abnormalities. Indeed, radiologists have learned to exploit certain perceptual biases in diagnostic findings and as training tools. We propose that further detailed study of radiologic illusions would help clarify the mechanisms underlying radiologic performance and provide additional heuristics to improve radiologist training and reduce medical error.
RESUMO
Troxler fading, the perceptual disappearance of stationary images upon sustained fixation, is common for objects with equivalent luminance to that of the background. Previous work showed that variations in microsaccadic rates underlie the perceptual vanishing and intensification of simple stimuli, such as Gabor patches. Here, we demonstrate that microsaccade dynamics also contribute to Troxler fading and intensification during the viewing of representational art. Participants fixated a small spot while viewing either a Gabor patch on a blank background, or Monet's painting "Impression, Sunrise." They continuously reported, via button press/release, whether the Gabor patch, or the sun in Monet's painting, was fading versus intensifying, while their eye movements were recorded with high precision. Microsaccade rates peaked before reports of increased visibility, and dropped before reports of decreased visibility or fading, both when viewing Gabor patches and Monet's sun. These results reveal that the relationship between microsaccade production and the reversal and prevention of Troxler fading applies not only to the viewing of contrived stimuli, but also to the observation of "Impression, Sunrise." Whether or not perceptual fading was consciously intended by Monet, our findings indicate that observers' oculomotor dynamics are a contributor to the cornerstone of Impressionism.
Assuntos
Movimentos Oculares/fisiologia , Movimentos Sacádicos/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Adolescente , Adulto , Feminino , Fixação Ocular/fisiologia , Humanos , Masculino , Pessoa de Meia-Idade , Estimulação Luminosa , Adulto JovemRESUMO
Supported by guidance from training during residency programs, radiologists learn clinically relevant visual features by viewing thousands of medical images. Yet the precise visual features that expert radiologists use in their clinical practice remain unknown. Identifying such features would allow the development of perceptual learning training methods targeted to the optimization of radiology training and the reduction of medical error. Here we review attempts to bridge current gaps in understanding with a focus on computational saliency models that characterize and predict gaze behavior in radiologists. There have been great strides toward the accurate prediction of relevant medical information within images, thereby facilitating the development of novel computer-aided detection and diagnostic tools. In some cases, computational models have achieved equivalent sensitivity to that of radiologists, suggesting that we may be close to identifying the underlying visual representations that radiologists use. However, because the relevant bottom-up features vary across task context and imaging modalities, it will also be necessary to identify relevant top-down factors before perceptual expertise in radiology can be fully understood. Progress along these dimensions will improve the tools available for educating new generations of radiologists, and aid in the detection of medically relevant information, ultimately improving patient health.
Assuntos
Fixação Ocular/fisiologia , Aprendizagem/fisiologia , Radiologistas , Percepção Visual/fisiologia , Diagnóstico por Imagem , HumanosRESUMO
As the first step in image interpretation is detection, an error in perception can prematurely end the diagnostic process leading to missed diagnoses. Because perceptual errors of this sort-"failure to detect"-are the most common interpretive error (and cause of litigation) in radiology, understanding the nature of perceptual expertise is essential in decreasing radiology's long-standing error rates. In this article, we review what constitutes a perceptual error, the existing models of radiologic image perception, the development of perceptual expertise and how it can be tested, perceptual learning methods in training radiologists, and why understanding perceptual expertise is still relevant in the era of artificial intelligence. Adding targeted interventions, such as perceptual learning, to existing teaching practices, has the potential to enhance expertise and reduce medical error.
Assuntos
Inteligência Artificial , Radiologia , Humanos , Aprendizagem , RadiografiaRESUMO
Across a wide variety of research environments, the recording of microsaccades and other fixational eye movements has provided insight and solutions into practical problems. Here we review the literature on fixational eye movements-especially microsaccades-in applied and ecologically-valid scenarios. Recent technical advances allow noninvasive fixational eye movement recordings in real-world contexts, while observers perform a variety of tasks. Thus, fixational eye movement measures have been obtained in a host of real-world scenarios, such as in connection with driver fatigue, vestibular sensory deprivation in astronauts, and elite athletic training, among others. Here we present the state of the art in the practical applications of fixational eye movement research, examine its potential future uses, and discuss the benefits of including microsaccade measures in existing eye movement detection technologies. Current evidence supports the inclusion of fixational eye movement measures in real-world contexts, as part of the development of new or improved oculomotor assessment tools. The real-world applications of fixational eye movement measurements will only grow larger and wider as affordable high-speed and high-spatial resolution eye trackers become increasingly prevalent.
RESUMO
Novel genetically encoded tools and advanced microscopy methods have revolutionized neural circuit analyses in insects and rodents over the last two decades. Whereas numerous technical hurdles originally barred these methodologies from success in nonhuman primates (NHPs), current research has started to overcome those barriers. In some cases, methodological advances developed with NHPs have even surpassed their precursors. One such advance includes new ultra-large imaging windows on NHP cortex, which are larger than the entire rodent brain and allow analysis unprecedented ultra-large-scale circuits. NHP imaging chambers now remain patent for periods longer than a mouse's lifespan, allowing for long-term all-optical interrogation of identified circuits and neurons over timeframes that are relevant to human cognitive development. Here we present some recent imaging advances brought forth by research teams using macaques and marmosets. These include technical developments in optogenetics; voltage-, calcium- and glutamate-sensitive dye imaging; two-photon and wide-field optical imaging; viral delivery; and genetic expression of indicators and light-activated proteins that result in the visualization of tens of thousands of identified cortical neurons in NHPs. We describe a subset of the many recent advances in circuit and cellular imaging tools in NHPs focusing here primarily on the research presented during the corresponding mini-symposium at the 2019 Society for Neuroscience annual meeting.
Assuntos
Encéfalo/diagnóstico por imagem , Rede Nervosa/diagnóstico por imagem , Neuroimagem/métodos , Neurônios/fisiologia , Animais , Mapeamento Encefálico , Microscopia de Fluorescência por Excitação Multifotônica , Optogenética , PrimatasRESUMO
Active communication between researchers and society is necessary for the scientific community's involvement in developing science-based policies. This need is recognized by governmental and funding agencies that compel scientists to increase their public engagement and disseminate research findings in an accessible fashion. Storytelling techniques can help convey science by engaging people's imagination and emotions. Yet, many researchers are uncertain about how to approach scientific storytelling, or feel they lack the tools to undertake it. Here we explore some of the techniques intrinsic to crafting scientific narratives, as well as the reasons why scientific storytelling may be an optimal way of communicating research to nonspecialists. We also point out current communication gaps between science and society, particularly in the context of neurodiverse audiences and those that include neurological and psychiatric patients. Present shortcomings may turn into areas of synergy with the potential to link neuroscience education, research, and advocacy.
Assuntos
Comunicação , Disseminação de Informação , Jornalismo Médico , Neurociências , HumanosRESUMO
[This corrects the article DOI: 10.3389/fnhum.2019.00213.].
RESUMO
Radiologists rely principally on visual inspection to detect, describe, and classify findings in medical images. As most interpretive errors in radiology are perceptual in nature, understanding the path to radiologic expertise during image analysis is essential to educate future generations of radiologists. We review the perceptual tasks and challenges in radiologic diagnosis, discuss models of radiologic image perception, consider the application of perceptual learning methods in medical training, and suggest a new approach to understanding perceptional expertise. Specific principled enhancements to educational practices in radiology promise to deepen perceptual expertise among radiologists with the goal of improving training and reducing medical error.
RESUMO
Visual search is the task of finding things with uncertain locations. Despite decades of research, the features that guide visual search remain poorly specified, especially in realistic contexts. This study tested the role of two features-shape and orientation-both in the presence and absence of hue information. We conducted five experiments to describe preview-target mismatch effects, decreases in performance caused by differences between the image of the target as it appears in the preview and as it appears in the actual search display. These mismatch effects provide direct measures of feature importance, with larger performance decrements expected for more important features. Contrary to previous conclusions, our data suggest that shape and orientation only guide visual search when color is not available. By varying the probability of mismatch in each feature dimension, we also show that these patterns of feature guidance do not change with the probability that the previewed feature will be invalid. We conclude that the target representations used to guide visual search are much less precise than previously believed, with participants encoding and using color and little else. (PsycINFO Database Record (c) 2019 APA, all rights reserved).
Assuntos
Percepção de Cores/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Percepção Espacial/fisiologia , Adulto , Feminino , Percepção de Forma/fisiologia , Humanos , Masculino , Adulto JovemRESUMO
Objects often appear with some amount of occlusion. We fill in missing information using local shape features even before attending to those objects-a process called amodal completion. Here we explore the possibility that knowledge about common realistic objects can be used to "restore" missing information even in cases where amodal completion is not expected. We systematically varied whether visual search targets were occluded or not, both at preview and in search displays. Button-press responses were longest when the preview was unoccluded and the target was occluded in the search display. This pattern is consistent with a target-verification process that uses the features visible at preview but does not restore missing information in the search display. However, visual search guidance was weakest whenever the target was occluded in the search display, regardless of whether it was occluded at preview. This pattern suggests that information missing during the preview was restored and used to guide search, thereby resulting in a feature mismatch and poor guidance. If this process were preattentive, as with amodal completion, we should have found roughly equivalent search guidance across all conditions because the target would always be unoccluded or restored, resulting in no mismatch. We conclude that realistic objects are restored behind occluders during search target preview, even in situations not prone to amodal completion, and this restoration does not occur preattentively during search.