Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 300(7): 107432, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825009

RESUMO

The Ca2+-activated Cl- channel regulator CLCA1 potentiates the activity of the Ca2+-activated Cl- channel (CaCC) TMEM16A by directly engaging the channel at the cell surface, inhibiting its reinternalization and increasing Ca2+-dependent Cl- current (ICaCC) density. We now present evidence of functional pairing between two other CLCA and TMEM16 protein family members, namely CLCA4 and the CaCC TMEM16B. Similar to CLCA1, (i) CLCA4 is a self-cleaving metalloprotease, and the N-terminal portion (N-CLCA4) is secreted; (ii) the von Willebrand factor type A (VWA) domain in N-CLCA4 is sufficient to potentiate ICaCC in HEK293T cells; and (iii) this is mediated by the metal ion-dependent adhesion site motif within VWA. The results indicate that, despite the conserved regulatory mechanism and homology between CLCA1 and CLCA4, CLCA4-dependent ICaCC are carried by TMEM16B, rather than TMEM16A. Our findings show specificity in CLCA/TMEM16 interactions and suggest broad physiological and pathophysiological links between these two protein families.

2.
J Heart Lung Transplant ; 42(10): 1353-1357, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37268051

RESUMO

Tocilizumab (TCZ), an IL-6 inhibitor, has shown promise in the treatment of donor-specific antibodies (DSA) and chronic antibody-mediated rejection (AMR) in renal transplant recipients. However, its use in lung transplantation has not been described. This retrospective case-control study compared AMR treatments containing TCZ in 9 bilateral lung transplant recipients to 18 patients treated for AMR without TCZ. Treatment with TCZ resulted in more clearance of DSA, lower recurrence of DSA, lower incidence of new DSA, and lower rates of graft failure when compared to those treated for AMR without TCZ. The incidence of infusion reactions, elevation in transaminases, and infections were similar between the 2 groups. These data support a role for TCZ in pulmonary AMR and establish preliminary evidence to design a randomized controlled trial of IL-6 inhibition for the management of AMR.


Assuntos
Transplante de Rim , Transplante de Pulmão , Humanos , Isoanticorpos , Estudos Retrospectivos , Estudos de Casos e Controles , Interleucina-6 , Transplante de Rim/efeitos adversos , Rejeição de Enxerto , Antígenos HLA
3.
Mol Cell Proteomics ; 22(1): 100476, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470535

RESUMO

Cancer-derived extracellular vesicles (EVs) promote tumorigenesis, premetastatic niche formation, and metastasis via their protein cargo. However, the proteins packaged by patient tumors into EVs cannot be determined in vivo because of the presence of EVs derived from other tissues. We therefore developed a cross-species proteomic method to quantify the human tumor-derived proteome of plasma EVs produced by patient-derived xenografts of four cancer types. Proteomic profiling revealed individualized packaging of novel protein cargo, and machine learning accurately classified the type of the underlying tumor.


Assuntos
Vesículas Extracelulares , Neoplasias , Humanos , Proteômica , Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Comunicação Celular , Proteoma/metabolismo
4.
Cell Metab ; 34(10): 1499-1513.e8, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36070756

RESUMO

Adipocytes transfer mitochondria to macrophages in white and brown adipose tissues to maintain metabolic homeostasis. In obesity, adipocyte-to-macrophage mitochondria transfer is impaired, and instead, adipocytes release mitochondria into the blood to induce a protective antioxidant response in the heart. We found that adipocyte-to-macrophage mitochondria transfer in white adipose tissue is inhibited in murine obesity elicited by a lard-based high-fat diet, but not a hydrogenated-coconut-oil-based high-fat diet, aging, or a corn-starch diet. The long-chain fatty acids enriched in lard suppress mitochondria capture by macrophages, diverting adipocyte-derived mitochondria into the blood for delivery to other organs, such as the heart. The depletion of macrophages rapidly increased the number of adipocyte-derived mitochondria in the blood. These findings suggest that dietary lipids regulate mitochondria uptake by macrophages locally in white adipose tissue to determine whether adipocyte-derived mitochondria are released into systemic circulation to support the metabolic adaptation of distant organs in response to nutrient stress.


Assuntos
Tecido Adiposo Branco , Antioxidantes , Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Antioxidantes/metabolismo , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Camundongos , Mitocôndrias/metabolismo , Obesidade/metabolismo , Amido/metabolismo
5.
J Immunol ; 208(6): 1467-1482, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35173037

RESUMO

Asthma is a chronic disease of childhood, but for unknown reasons, disease activity sometimes subsides as children mature. In this study, we present clinical and animal model evidence suggesting that the age dependency of childhood asthma stems from an evolving host response to respiratory viral infection. Using clinical data, we show that societal suppression of respiratory virus transmission during coronavirus disease 2019 lockdown disrupted the traditional age gradient in pediatric asthma exacerbations, connecting the phenomenon of asthma remission to virus exposure. In mice, we show that asthmatic lung pathology triggered by Sendai virus (SeV) or influenza A virus is highly age-sensitive: robust in juvenile mice (4-6 wk old) but attenuated in mature mice (>3 mo old). Interestingly, allergen induction of the same asthmatic traits was less dependent on chronological age than viruses. Age-specific responses to SeV included a juvenile bias toward type 2 airway inflammation that emerged early in infection, whereas mature mice exhibited a more restricted bronchiolar distribution of infection that produced a distinct type 2 low inflammatory cytokine profile. In the basal state, aging produced changes to lung leukocyte burden, including the number and transcriptional landscape of alveolar macrophages (AMs). Importantly, depleting AMs in mature mice restored post-SeV pathology to juvenile levels. Thus, aging influences chronic outcomes of respiratory viral infection through regulation of the AM compartment and type 2 inflammatory responses to viruses. Our data provide insight into how asthma remission might develop in children.


Assuntos
Fatores Etários , Envelhecimento/fisiologia , Asma/imunologia , COVID-19/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Pulmão/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Respirovirus/imunologia , SARS-CoV-2/fisiologia , Vírus Sendai/fisiologia , Células Th2/imunologia , Animais , Asma/epidemiologia , COVID-19/epidemiologia , Citocinas/metabolismo , Humanos , Influenza Humana/epidemiologia , Camundongos , Camundongos Endogâmicos C57BL , Estados Unidos/epidemiologia
6.
J Allergy Clin Immunol ; 149(4): 1473-1480.e6, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34560104

RESUMO

BACKGROUND: Chronic pruritus, or itch, is common and debilitating, but the neuroimmune mechanisms that drive chronic itch are only starting to be elucidated. Recent studies demonstrate that the IL-33 receptor (IL-33R) is expressed by sensory neurons. However, whether sensory neuron-restricted activity of IL-33 is necessary for chronic itch remains poorly understood. OBJECTIVES: We sought to determine if IL-33 signaling in sensory neurons is critical for the development of chronic itch in 2 divergent pruritic disease models. METHODS: Plasma levels of IL-33 were assessed in patients with atopic dermatitis (AD) and chronic pruritus of unknown origin (CPUO). Mice were generated to conditionally delete IL-33R from sensory neurons. The contribution of neuronal IL-33R signaling to chronic itch development was tested in mouse models that recapitulate key pathologic features of AD and CPUO, respectively. RESULTS: IL-33 was elevated in both AD and CPUO as well as their respective mouse models. While neuron-restricted IL-33R signaling was dispensable for itch in AD-like disease, it was required for the development of dry skin itch in a mouse model that mirrors key aspects of CPUO pathology. CONCLUSIONS: These data highlight how IL-33 may be a predominant mediator of itch in certain contexts, depending on the tissue microenvironment. Further, this study provides insight into future therapeutic strategies targeting the IL-33 pathway for chronic itch.


Assuntos
Dermatite Atópica , Interleucina-33 , Animais , Modelos Animais de Doenças , Humanos , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33/metabolismo , Camundongos , Prurido , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Pele
7.
J Clin Invest ; 131(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343135

RESUMO

Epithelial cells are charged with protection at barrier sites, but whether this normally beneficial response might sometimes become dysfunctional still needs definition. Here, we recognized a pattern of imbalance marked by basal epithelial cell growth and differentiation that replaced normal airspaces in a mouse model of progressive postviral lung disease due to the Sendai virus. Single-cell and lineage-tracing technologies identified a distinct subset of basal epithelial stem cells (basal ESCs) that extended into gas-exchange tissue to form long-term bronchiolar-alveolar remodeling regions. Moreover, this cell subset was selectively expanded by crossing a cell-growth and survival checkpoint linked to the nuclear-localized alarmin IL-33 that was independent of IL-33 receptor signaling and instead connected to autocrine chromatin accessibility. This mechanism creates an activated stem-progenitor cell lineage with potential for physiological or pathological function. Thus, conditional loss of Il33 gene function in basal epithelial cells disrupted the homeostasis of the epithelial barrier at skin and gut sites but also markedly attenuated postviral disease in the lung based on the downregulation of remodeling and inflammation. Thus, we define a basal ESC strategy to deploy innate immune machinery that appears to overshoot the primordial goal of self-defense. Our findings reveal new targets to stratify and correct chronic and often deadly postviral disease.


Assuntos
Alarminas/fisiologia , Células Epiteliais/fisiologia , Interleucina-33/fisiologia , Pneumopatias/fisiopatologia , Infecções por Respirovirus/complicações , Vírus Sendai , Células-Tronco/fisiologia , Animais , Diferenciação Celular , Interleucina-33/genética , Camundongos , Análise de Célula Única , Células-Tronco/citologia
8.
J Heart Lung Transplant ; 40(10): 1212-1222, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34353713

RESUMO

BACKGROUND: Mechanical ventilation immediately after lung transplantation may impact the development of primary graft dysfunction (PGD), particularly in cases of donor-recipient size mismatch as ventilation is typically based on recipient rather than donor size. METHODS: We conducted a retrospective cohort study of adult bilateral lung transplant recipients at our center between January 2010 and January 2017. We defined donor-based lung protective ventilation (dLPV) as 6 to 8 ml/kg of donor ideal body weight and plateau pressure <30 cm H2O. We calculated the donor-recipient predicted total lung capacity (pTLC) ratio and used logistic regression to examine relationships between pTLC ratio, dLPV and PGD grade 3 at 48 to 72 hours. We used Cox proportional hazards modelling to examine the relationship between pTLC ratio, dLPV and 1-year survival. RESULTS: The cohort included 373 recipients; 24 (6.4%) developed PGD grade 3 at 48 to 72 hours, and 213 (57.3%) received dLPV. Mean pTLC ratio was 1.04 ± 0.18. dLPV was associated with significantly lower risks of PGD grade 3 (OR = 0.44; 95% CI: 0.29-0.68, p < 0.001) and 1-year mortality (HR = 0.49; 95% CI: 0.29-0.8, p = 0.018). There was a significant association between pTLC ratio and the risk of PGD grade 3, but this was attenuated by the use of dLPV. CONCLUSIONS: dLPV is associated with decreased risk of PGD grade 3 at 48 to 72 hours and decreased 1-year mortality. Additionally, dLPV attenuates the association between pTLC and both PGD grade 3 and 1-year mortality. Donor-based ventilation strategies may help to mitigate the risk of PGD and other adverse outcomes associated with size mismatch after lung transplantation.


Assuntos
Pneumopatias/cirurgia , Transplante de Pulmão/efeitos adversos , Disfunção Primária do Enxerto/epidemiologia , Respiração Artificial , Idoso , Peso Corporal , Feminino , Humanos , Modelos Logísticos , Pneumopatias/diagnóstico , Pneumopatias/mortalidade , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Disfunção Primária do Enxerto/diagnóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Taxa de Sobrevida , Fatores de Tempo , Capacidade Pulmonar Total
9.
JCI Insight ; 6(4)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33507882

RESUMO

IL-33 is a key mediator of chronic airway disease driven by type 2 immune pathways, yet the nonclassical secretory mechanism for this cytokine remains undefined. We performed a comprehensive analysis in human airway epithelial cells, which revealed that tonic IL-33 secretion is dependent on the ceramide biosynthetic enzyme neutral sphingomyelinase 2 (nSMase2). IL-33 is cosecreted with exosomes by the nSMase2-regulated multivesicular endosome (MVE) pathway as surface-bound cargo. In support of these findings, human chronic obstructive pulmonary disease (COPD) specimens exhibited increased epithelial expression of the abundantly secreted IL33Δ34 isoform and augmented nSMase2 expression compared with non-COPD specimens. Using an Alternaria-induced airway disease model, we found that the nSMase2 inhibitor GW4869 abrogated both IL-33 and exosome secretion as well as downstream inflammatory pathways. This work elucidates a potentially novel aspect of IL-33 biology that may be targeted for therapeutic benefit in chronic airway diseases driven by type 2 inflammation.


Assuntos
Exossomos/metabolismo , Interleucina-33/imunologia , Interleucina-33/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Compostos de Anilina , Animais , Compostos de Benzilideno , Ceramidas/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Humanos , Imunidade Celular , Inflamação/metabolismo , Interleucina-33/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Sistema Respiratório
10.
Alzheimers Dement ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090700

RESUMO

INTRODUCTION: Triggering receptor expressed on myeloid cells-2 (TREM2) is an immune receptor expressed on microglia that also can become soluble (sTREM2). How TREM2 engages different ligands remains poorly understood. METHODS: We used comprehensive biolayer interferometry (BLI) analysis to investigate TREM2 and sTREM2 interactions with apolipoprotein E (apoE) and monomeric amyloid beta (Aß) (mAß42). RESULTS: TREM2 engagement of apoE was protein mediated with little effect of lipidation, showing slight affinity differences between isoforms (E4 > E3 > E2). Another family member, TREML2, did not bind apoE. Disease-linked TREM2 variants within a "basic patch" minimally impact apoE binding. Instead, TREM2 uses a unique hydrophobic surface to bind apoE, which requires the apoE hinge region. TREM2 and sTREM2 directly bind mAß42 and potently inhibit Aß42 polymerization, suggesting a potential role for soluble sTREM2 in preventing AD pathogenesis. DISCUSSION: These findings demonstrate that TREM2 has at least two ligand-binding surfaces that might be therapeutic targets and uncovers a potential function for sTREM2 in directly inhibiting Aß polymerization.

11.
Clin Transplant ; 33(10): e13708, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31494969

RESUMO

BACKGROUND: Chronic lung allograft dysfunction (CLAD) is the leading cause of death beyond the first year after lung transplantation. Several treatments have been used to prevent the progression or reverse the effects of CLAD. Cytolytic therapy with rabbit antithymocyte globulin (rATG) has previously shown to be a potential option. However, the effect on patients with restrictive allograft syndrome (RAS) versus bronchiolitis obliterans syndrome (BOS) and the effect of cumulative dosing are unknown. METHODS: The charts of lung transplant patients treated with rATG at Barnes-Jewish Hospital from 2009 to 2016 were retrospectively reviewed. The primary outcome was response to rATG; patients were deemed responders if their FEV1 improved in the 6 months after rATG treatment. Safety endpoints included incidence of serum sickness, cytokine release syndrome, malignancy, and infectious complications. RESULTS: 108 patients were included in this study; 43 (40%) patients were responders who experienced an increase in FEV1 after rATG therapy. No predictors of response to rATG therapy were identified. Serum sickness occurred in 22% of patients, 15% experienced cytokine release syndrome, and 19% developed an infection after therapy. CONCLUSION: 40% of patients with CLAD have an improvement in lung function after treatment with rATG although the improvement was typically minimal.


Assuntos
Soro Antilinfocitário/administração & dosagem , Rejeição de Enxerto/tratamento farmacológico , Sobrevivência de Enxerto/efeitos dos fármacos , Pneumopatias/cirurgia , Transplante de Pulmão/efeitos adversos , Complicações Pós-Operatórias/tratamento farmacológico , Animais , Feminino , Seguimentos , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/patologia , Humanos , Pneumopatias/patologia , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/patologia , Prognóstico , Coelhos , Estudos Retrospectivos , Fatores de Risco , Síndrome
12.
J Heart Lung Transplant ; 38(1): 5-16, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391193

RESUMO

BACKGROUND: Lung transplant (LTx) recipients have low long-term survival and a high incidence of bronchiolitis obliterans syndrome (BOS). However, few long-term, multicenter, and precise estimates of BOS-free survival (a composite outcome of death or BOS) incidence exist. METHODS: This retrospective cohort study of primary LTx recipients (1994-2011) reported to the International Society of Heart and Lung Transplantation Thoracic Transplant Registry assessed outcomes through 2012. For the composite primary outcome of BOS-free survival, we used Kaplan-Meier survival and Cox proportional hazards regression, censoring for loss to follow-up, end of study, and re-LTx. Although standard Thoracic Transplant Registry analyses censor at the last consecutive annual complete BOS status report, our analyses allowed for partially missing BOS data. RESULTS: Due to BOS reporting standards, 99.1% of the cohort received LTx in North America. During 79,896 person-years of follow-up, single LTx (6,599 of 15,268 [43%]) and bilateral LTx (8,699 of 15,268 [57%]) recipients had a median BOS-free survival of 3.16 years (95% confidence interval [CI], 2.99-3.30 years) and 3.58 years (95% CI, 3.53-3.72 years), respectively. Almost 90% of the single and bilateral LTx recipients developed the composite outcome within 10 years of transplantation. Standard Registry analyses "overestimated" median BOS-free survival by 0.42 years and "underestimated" the median survival after BOS by about a half-year for both single and bilateral LTx (p < 0.05). CONCLUSIONS: Most LTx recipients die or develop BOS within 4 years, and very few remain alive and free from BOS at 10 years post-LTx. Less inclusive Thoracic Transplant Registry analytic methods tend to overestimate BOS-free survival. The Registry would benefit from improved international reporting of BOS and other chronic lung allograft dysfunction (CLAD) events.


Assuntos
Bronquiolite Obliterante/epidemiologia , Transplante de Pulmão/efeitos adversos , Sistema de Registros , Sociedades Médicas/estatística & dados numéricos , Adulto , Idoso , Bronquiolite Obliterante/etiologia , Intervalo Livre de Doença , Feminino , Seguimentos , Transplante de Coração-Pulmão , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Taxa de Sobrevida/tendências , Estados Unidos/epidemiologia , Adulto Jovem
13.
Elife ; 52016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27995897

RESUMO

Genetic variations in the myeloid immune receptor TREM2 are linked to several neurodegenerative diseases. To determine how TREM2 variants contribute to these diseases, we performed structural and functional studies of wild-type and variant proteins. Our 3.1 Å TREM2 crystal structure revealed that mutations found in Nasu-Hakola disease are buried whereas Alzheimer's disease risk variants are found on the surface, suggesting that these mutations have distinct effects on TREM2 function. Biophysical and cellular methods indicate that Nasu-Hakola mutations impact protein stability and decrease folded TREM2 surface expression, whereas Alzheimer's risk variants impact binding to a TREM2 ligand. Additionally, the Alzheimer's risk variants appear to epitope map a functional surface on TREM2 that is unique within the larger TREM family. These findings provide a guide to structural and functional differences among genetic variants of TREM2, indicating that therapies targeting the TREM2 pathway should be tailored to these genetic and functional differences with patient-specific medicine approaches for neurodegenerative disorders.


Assuntos
Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Doenças Neurodegenerativas/genética , Receptores Imunológicos/química , Receptores Imunológicos/metabolismo , Cristalografia por Raios X , Humanos , Glicoproteínas de Membrana/genética , Modelos Moleculares , Proteínas Mutantes/genética , Conformação Proteica , Receptores Imunológicos/genética
14.
J Exp Med ; 212(5): 681-97, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25897174

RESUMO

Viral infections and type 2 immune responses are thought to be critical for the development of chronic respiratory disease, but the link between these events needs to be better defined. Here, we study a mouse model in which infection with a mouse parainfluenza virus known as Sendai virus (SeV) leads to long-term activation of innate immune cells that drive IL-13-dependent lung disease. We find that chronic postviral disease (signified by formation of excess airway mucus and accumulation of M2-differentiating lung macrophages) requires macrophage expression of triggering receptor expressed on myeloid cells-2 (TREM-2). Analysis of mechanism shows that viral replication increases lung macrophage levels of intracellular and cell surface TREM-2, and this action prevents macrophage apoptosis that would otherwise occur during the acute illness (5-12 d after inoculation). However, the largest increases in TREM-2 levels are found as the soluble form (sTREM-2) long after clearance of infection (49 d after inoculation). At this time, IL-13 and the adapter protein DAP12 promote TREM-2 cleavage to sTREM-2 that is unexpectedly active in preventing macrophage apoptosis. The results thereby define an unprecedented mechanism for a feed-forward expansion of lung macrophages (with IL-13 production and consequent M2 differentiation) that further explains how acute infection leads to chronic inflammatory disease.


Assuntos
Apoptose/imunologia , Pneumopatias/imunologia , Macrófagos Alveolares/imunologia , Glicoproteínas de Membrana/imunologia , Receptores Imunológicos/imunologia , Infecções por Respirovirus/imunologia , Vírus Sendai/fisiologia , Animais , Apoptose/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Imunidade Inata/genética , Interleucina-13/genética , Interleucina-13/imunologia , Pneumopatias/genética , Pneumopatias/patologia , Pneumopatias/virologia , Macrófagos Alveolares/patologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Knockout , Receptores Imunológicos/genética , Infecções por Respirovirus/genética , Infecções por Respirovirus/patologia , Replicação Viral/genética , Replicação Viral/imunologia
15.
Nat Rev Immunol ; 14(10): 686-98, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25234144

RESUMO

An abnormal immune response to environmental agents is generally thought to be responsible for causing chronic respiratory diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Based on studies of experimental models and human subjects, there is increasing evidence that the response of the innate immune system is crucial for the development of this type of airway disease. Airway epithelial cells and innate immune cells represent key components of the pathogenesis of chronic airway disease and are emerging targets for new therapies. In this Review, we summarize the innate immune mechanisms by which airway epithelial cells and innate immune cells regulate the development of chronic respiratory diseases. We also explain how these pathways are being targeted in the clinic to treat patients with these diseases.


Assuntos
Células Epiteliais/imunologia , Sistema Imunitário/imunologia , Imunidade Inata/imunologia , Mucosa Respiratória/imunologia , Doenças Respiratórias/imunologia , Imunidade Adaptativa/imunologia , Animais , Doença Crônica , Humanos , Sistema Imunitário/citologia , Modelos Imunológicos , Mucosa Respiratória/citologia
16.
J Clin Invest ; 123(9): 3967-82, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23945235

RESUMO

Chronic obstructive lung disease is characterized by persistent abnormalities in epithelial and immune cell function that are driven, at least in part, by infection. Analysis of parainfluenza virus infection in mice revealed an unexpected role for innate immune cells in IL-13-dependent chronic lung disease, but the upstream driver for the immune axis in this model and in humans with similar disease was undefined. We demonstrate here that lung levels of IL-33 are selectively increased in postviral mice with chronic obstructive lung disease and in humans with very severe chronic obstructive pulmonary disease (COPD). In the mouse model, IL-33/IL-33 receptor signaling was required for Il13 and mucin gene expression, and Il33 gene expression was localized to a virus-induced subset of airway serous cells and a constitutive subset of alveolar type 2 cells that are both linked conventionally to progenitor function. In humans with COPD, IL33 gene expression was also associated with IL13 and mucin gene expression, and IL33 induction was traceable to a subset of airway basal cells with increased capacities for pluripotency and ATP-regulated release of IL-33. Together, these findings provide a paradigm for the role of the innate immune system in chronic disease based on the influence of long-term epithelial progenitor cells programmed for excess IL-33 production.


Assuntos
Células Epiteliais/metabolismo , Interleucinas/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Células-Tronco/metabolismo , Animais , Estudos de Casos e Controles , Células Cultivadas , Humanos , Imunidade Inata , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Interleucinas/genética , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Receptores de Interleucina/metabolismo , Mucosa Respiratória/patologia , Esferoides Celulares/metabolismo , Transcriptoma , Regulação para Cima
17.
Front Biosci (Schol Ed) ; 4(3): 1088-98, 2012 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-22202111

RESUMO

Cilia are specialized organelles that extend from the cell surface into the local environment. Cilia of the airway epithelia are motile to provide mucociliary clearance. On other cells, solitary cilia are specialized to detect chemical or mechanosensory signals. Sensory proteins in motile cilia have recently been identified that detect fluid flow, bitter taste and sex hormones. The relationship of these sensory functions in motile cilia to disease is now being revealed. An example are the polycystin-1 and polycystin-2 proteins that function as a flow sensor in kidney cilia and are mutated in autosomal dominant polycystic kidney disease (ADPKD). These polycystins are also expressed in motile cilia, potentially operating as sensors in the lung. Computed tomography studies from patients with ADPKD reveal evidence of bronchiectasis, suggesting polycystins are important in lung function. The motile cilia expression of this protein complex, as well as sensory channel TRPV4, bitter taste and sex hormones receptors, indicate that the cilia is wired to interpret environmental cues. Defective signaling of sensory proteins may result in a ciliopathy that includes lung disease.


Assuntos
Bronquiectasia/metabolismo , Bronquiectasia/patologia , Cílios/metabolismo , Cílios/patologia , Células Receptoras Sensoriais/metabolismo , Animais , Humanos , Rim/metabolismo , Rim/patologia , Pulmão/metabolismo , Pulmão/patologia , Rim Policístico Autossômico Dominante/metabolismo , Rim Policístico Autossômico Dominante/patologia , Sensação , Transdução de Sinais , Canais de Cátion TRPP/metabolismo
18.
J Exp Med ; 204(13): 3157-72, 2007 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-18070938

RESUMO

Viruses have evolved a myriad of evasion strategies focused on undermining chemokine-mediated immune surveillance, exemplified by the mouse gamma-herpesvirus 68 M3 decoy receptor. Crystal structures of M3 in complex with C chemokine ligand 1/lymphotactin and CC chemokine ligand 2/monocyte chemoattractant protein 1 reveal that invariant chemokine features associated with G protein-coupled receptor binding are primarily recognized by the decoy C-terminal domain, whereas the N-terminal domain (NTD) reconfigures to engage divergent basic residue clusters on the surface of chemokines. Favorable electrostatic forces dramatically enhance the association kinetics of chemokine binding by M3, with a primary role ascribed to acidic NTD regions that effectively mimic glycosaminoglycan interactions. Thus, M3 employs two distinct mechanisms of chemical imitation to potently sequester chemokines, thereby inhibiting chemokine receptor binding events as well as the formation of chemotactic gradients necessary for directed leukocyte trafficking.


Assuntos
Glicosaminoglicanos/metabolismo , Receptor Muscarínico M3/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ligação Competitiva , Cristalografia por Raios X , Escherichia coli/metabolismo , Humanos , Cinética , Leucócitos/metabolismo , Ligantes , Linfocinas/metabolismo , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Sialoglicoproteínas/metabolismo , Eletricidade Estática
19.
J Immunol ; 178(7): 4623-31, 2007 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-17372021

RESUMO

Multiple injections of low-dose streptozotocin (MLDS) induce lymphocytic insulitis and diabetes in rodents. To test whether the influx of inflammatory cells was associated with changes in the expression of chemokines, we measured the expression of all known chemokine ligands by real-time quantitative PCR in isolated islets. With the exception of CCL20 and CCL19, chemokines were not significantly expressed in islets from wild-type mice before MLDS treatment. Ten days after treatment, the expression of several chemokines, including CXCL9, CCL1, CXCL10, and CCL21, was dramatically up-regulated. The expression of CCL1, CXCL9, and CCL21 protein was confirmed by immunohistochemistry and was mostly associated with the infiltrating cells. The mouse herpesvirus 68-encoded chemokine decoy receptor M3 can broadly engage these chemokines with high affinity. To test whether a blockade of chemokine function would alter the onset or magnitude of insulitis and diabetes, we used transgenic mice expressing M3 in beta cells (rat insulin promoter (RIP)-M3 mice). RIP-M3 mice were normoglycemic and responded normally to glucose challenge but were remarkably resistant to diabetes induced by MLDS. Islets from MLDS-treated RIP-M3 mice had fewer inflammatory cells and expressed lower levels of chemokines than those from MLDS-treated controls. The role of M3 in chemokine blockade during insulitis was further supported by in vitro experiments demonstrating that multiple chemokines up-regulated during islet inflammation are high-affinity M3 ligands that can be simultaneously sequestered. These results implicate chemokines as key mediators of insulitis and suggest that their blockade may represent a novel strategy to prevent insulitis and islet destruction.


Assuntos
Quimiocinas/antagonistas & inibidores , Quimiocinas/metabolismo , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/prevenção & controle , Células Secretoras de Insulina/imunologia , Proteínas Virais/metabolismo , Animais , Quimiocinas/análise , Diabetes Mellitus Experimental/genética , Insulina/análise , Insulina/metabolismo , Células Secretoras de Insulina/química , Camundongos , Camundongos Transgênicos , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Ratos , Estreptozocina/administração & dosagem , Regulação para Cima , Proteínas Virais/análise , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA