RESUMO
INTRODUCTION/AIM: Central sensitivity to thyroid hormones refers to the responsiveness of the hypothalamic-pituitary-thyroid (HPT) axis to changes in circulating free thyroxine (fT4). Although dose-response relationships between thyroid hormones per se and urinary iodine (UI) levels have been observed, central sensitivity to thyroid hormones in relation to UI remains unexplored. The aim of the present study was to evaluate central sensitivity to thyroid hormones (by means of the Thyroid Feedback Quantile-based Index [TFQI], which is a calculated measure, based on TSH and fT4, that estimates central sensitivity to thyroid hormones) in pregnancy and to assess whether it differs according to gestational age and/or iodine intake. MATERIALS AND METHODS: One thousand, one hundred and two blood and urine samples were collected from pregnant women (with a mean age ± SD of 30.4 ± 4.6 years) during singleton pregnancies; women with known/diagnosed thyroid disease were excluded. Specifically, TSH and fT4, anti-thyroid peroxidase antibodies and UI were measured in each trimester and at two months postpartum, while the TFQI was calculated for all the study samples. After the elimination of outliers, statistical analysis was conducted with analysis of variance (ANOVA) for the variables versus time period, while Pearson's correlation was used to assess the TFQI versus UI. RESULTS: The mean TFQI index ranged from -0.060 (second trimester) to -0.053 (two months postpartum), while the corresponding UI was 137 and 165 µg/L, respectively. The TFQI-UI correlation was marginally negative (Pearson r: -0.323, p: 0.04) and significantly positive (r: +0.368, p: 0.050) for UI values over 250 µg/L, in the first and the second trimesters of pregnancy, respectively. DISCUSSION: The TFQI is a new index reflecting central sensitivity to thyroid hormones. A lower TFQI indicates higher sensitivity to thyroid hormones. In our sample, the TFQI was mainly positively related to iodine intake in the second trimester of pregnancy (following the critical period of organogenesis). Thus, the observed changes in the TFQI may reflect the different ways of the central action of thyroid hormones, according to the phase of pregnancy. These results have the potential to enhance our comprehension of the changes in the HPT axis' function via variations in central sensitivity to thyroid hormones and its interplay with nutritional iodine status during pregnancy.
Assuntos
Iodo , Hormônios Tireóideos , Tiroxina , Humanos , Feminino , Gravidez , Iodo/urina , Adulto , Tiroxina/sangue , Hormônios Tireóideos/sangue , Tireotropina/sangue , Idade Gestacional , Glândula TireoideRESUMO
BACKGROUND: Biomedical engineering, especially tissue engineering, is trying to provide an alternative solution to generate functional organs/tissues for use in various applications. These include beyond the final goal of transplantation, disease modeling and drug discovery as well. The aim of this study is to comprehensively review the existing literature on hydrogel-based vascularized organ (i.e., liver, pancreas, kidneys, intestine, stomach and spleen) tissue engineering of the abdominal organs. METHODS: A comprehensive literature search was conducted on the Scopus database (latest search 1 September 2024). The research studies including hydrogel-based vascularized organ tissue engineering in the organs examined here were eligible for the review. RESULTS: Herein, 18 studies were included. Specifically, 10 studies included the liver or hepatic tissue, 5 studies included the pancreas or pancreatic islet tissue, 3 studies included the kidney or renal tissue, 1 study included the intestine or intestinal or bowel tissue, 1 study included the stomach or gastric tissue, and 0 studies included spleen tissue. CONCLUSION: Hydrogels are biocompatible materials with ideal characteristics for use as scaffolds. Even though organ tissue engineering is a rapidly growing field, there are still many obstacles to overcome to create a fully functional and long-lasting organ.
RESUMO
ANKRD11 (Ankyrin Repeat Domain 11) is a chromatin regulator and a causative gene for KBG syndrome, a rare developmental disorder characterized by multiple organ abnormalities, including cardiac defects. However, the role of ANKRD11 in heart development is unknown. The neural crest plays a leading role in embryonic heart development, and its dysfunction is implicated in congenital heart defects. We demonstrate that conditional knockout of Ankrd11 in the murine embryonic neural crest results in persistent truncus arteriosus, ventricular dilation, and impaired ventricular contractility. We further show these defects occur due to aberrant cardiac neural crest cell organization leading to outflow tract septation failure. Lastly, knockout of Ankrd11 in the neural crest leads to impaired expression of various transcription factors, chromatin remodelers and signaling pathways, including mTOR, BMP and TGF-ß in the cardiac neural crest cells. In this work, we identify Ankrd11 as a regulator of neural crest-mediated heart development and function.
Assuntos
Cardiopatias Congênitas , Coração , Camundongos Knockout , Crista Neural , Proteínas Repressoras , Animais , Feminino , Camundongos , Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/embriologia , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/metabolismo , Cardiopatias Congênitas/patologia , Miocárdio/metabolismo , Crista Neural/metabolismo , Crista Neural/embriologia , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Transdução de SinaisRESUMO
OBJECTIVE: Rapid maxillary expansion is a common orthodontic procedure to correct maxillary constriction. Assessing the midpalatal suture (MPS) expansion plays a crucial role in treatment planning to determine its effectiveness. The objectives of this preliminary investigation are to demonstrate a proof of concept that the palatal bone underlying the rugae can be clearly imaged by ultrasound (US) and the reconstructed axial view of the US image accurately maps the MPS patency. METHODS: An ex-vivo US scanning was conducted on the upper jawbones of two piglet's carcasses before and after the creation of bone defects, which simulated the suture opening. The planar images were processed to enhance bone intensity distribution before being orderly stacked to fuse into a volume. Graph-cut segmentation was applied to delineate the palatal bone to generate a bone volume. The accuracy of the reconstructed bone volume and the suture opening was validated by the micro-computed tomography (µCT) data used as the ground truth and compared with cone beam computed tomography (CBCT) data as the clinical standard. Also included in the comparison is the rugae thickness. Correlation and Bland-Altman plots were used to test the agreement between the two methods: US versus µCT/CBCT. RESULTS: The reconstruction of the US palatal bone volumes was accurate based on surface topography comparison with a mean error of 0.19 mm for pre-defect and 0.15 mm and 0.09 mm for post-defect models of the two samples, respectively when compared with µCT volumes. A strong correlation (R2 ≥ 0.99) in measuring MPS expansion was found between US and µCT/CBCT with MADs of less than 0.05 mm, 0.11 mm and 0.23 mm for US, µCT and CBCT, respectively. CONCLUSIONS: It was possible to axially image the MPS opening and rugae thickness accurately using high-frequency ultrasound. CLINICAL SIGNIFICANCE: This study introduces an ionizing radiation-free, low-cost, and portable technique to accurately image a difficult part of oral cavity anatomy. The advantages of conceivable visualization could promise a successful clinical examination of MPS to support the predictable treatment outcome of maxillary transverse deficiency.
Assuntos
Tomografia Computadorizada de Feixe Cônico , Técnica de Expansão Palatina , Ultrassonografia , Microtomografia por Raio-X , Animais , Suínos , Microtomografia por Raio-X/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Técnica de Expansão Palatina/instrumentação , Ultrassonografia/métodos , Palato/diagnóstico por imagem , Palato/anatomia & histologia , Suturas Cranianas/diagnóstico por imagem , Suturas Cranianas/anatomia & histologia , Maxila/diagnóstico por imagem , Palato Duro/diagnóstico por imagem , Palato Duro/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodosRESUMO
Membrane-type I metalloproteinase (MT1-MMP/MMP14) plays a key role in various pathophysiological processes, indicating an unaddressed need for a targeted therapeutic approach. However, mice genetically deficient in Mmp14 show severe defects in development and growth. To investigate the possibility of MT1-MMP inhibition as a safe treatment in adults, we generated global Mmp14 tamoxifen-induced conditional knockout (Mmp14kd) mice and found that MT1-MMP deficiency in adult mice resulted in severe inflammatory arthritis. Mmp14kd mice started to show noticeably swollen joints two weeks after tamoxifen administration, which progressed rapidly. Mmp14kd mice reached a humane endpoint 6 to 8 weeks after tamoxifen administration due to severe arthritis. Plasma TNF-α levels were also significantly increased in Mmp14kd mice. Detailed analysis revealed chondrocyte hypertrophy, synovial fibrosis, and subchondral bone remodeling in the joints of Mmp14kd mice. However, global conditional knockout of MT1-MMP in adult mice did not affect body weight, blood glucose, or plasma cholesterol and triglyceride levels. Furthermore, we observed substantial expression of MT1-MMP in the articular cartilage of patients with osteoarthritis. We then developed chondrocyte-specific Mmp14 tamoxifen-induced conditional knockout (Mmp14chkd) mice. Chondrocyte MT1-MMP deficiency in adult mice also caused apparent chondrocyte hypertrophy. However, Mmp14chkd mice did not exhibit synovial hyperplasia or noticeable arthritis, suggesting that chondrocyte MT1-MMP is not solely responsible for the onset of severe arthritis observed in Mmp14kd mice. Our findings also suggest that highly cell-type specific inhibition of MT1-MMP is required for its potential therapeutic use.
Assuntos
Cartilagem Articular , Osteoartrite , Animais , Camundongos , Glicemia , Peso Corporal , Metaloproteinase 14 da Matriz/genética , Osteoartrite/induzido quimicamente , Osteoartrite/genéticaRESUMO
OBJECTIVE: The aim of this research was to investigate the role of the cornified epithelium, the outermost layer of the oral mucosa, engineered to prevent water loss and microorganism invasion, in severe forms of periodontitis (stage III or IV, grade C). METHODS: Porphyromonas gingivalis, a major periodontal disease pathogen, can affect cornified epithelial protein expression through chronic activation of signal transducer and activator of transcription 6 (Stat6). We used a mouse model, Stat6VT, that mimics this to determine the effects of barrier defect on P gingivalis-induced inflammation, bone loss, and cornified epithelial protein expression, and compared histologic and immunohistologic findings with tissues obtained from human controls and patients with stage III and IV, grade C disease. Alveolar bone loss in mice was assessed using micro-computerised tomography, and soft tissue morphology was qualitatively and semi-quantitatively assessed by histologic examination for several proteins, including loricrin, filaggrin, cytokeratin 1, cytokeratin 14, a proliferation marker, a pan-leukocyte marker, as well as morphologic signs of inflammation. Relative cytokine levels were measured in mouse plasma by cytokine array. RESULTS: In the tissues from patients with periodontal disease, there were greater signs of inflammation (rete pegs, clear cells, inflammatory infiltrates) and a decrease and broadening of expression of loricrin and cytokeratin 1. Cytokeratin 14 expression was also broader and decreased in stage IV. P gingivalis-infected Stat6VT mice showed greater alveolar bone loss in 9 out of 16 examined sites, and similar patterns of disruption to human patients in expression of loricrin and cytokeratins 1 and 14. There were also increased numbers of leukocytes, decreased proliferation, and greater signs of inflammation compared with P gingivalis-infected control mice. CONCLUSIONS: Our study provides evidence that changes in epithelial organisation can exacerbate the effects of P gingivalis infection, with similarities to the most severe forms of human periodontitis.
Assuntos
Perda do Osso Alveolar , Periodontite , Humanos , Camundongos , Animais , Perda do Osso Alveolar/patologia , Queratina-14 , Queratinas , Inflamação/patologia , Citocinas/metabolismo , Porphyromonas gingivalisRESUMO
Periodontitis, the leading cause of adult tooth loss, has been identified as an independent risk factor for cardiovascular disease (CVD). Studies suggest that periodontitis, like other CVD risk factors, shows the persistence of increased CVD risk even after mitigation. We hypothesized that periodontitis induces epigenetic changes in hematopoietic stem cells in the bone marrow (BM), and such changes persist after the clinical elimination of the disease and underlie the increased CVD risk. We used a BM transplant approach to simulate the clinical elimination of periodontitis and the persistence of the hypothesized epigenetic reprogramming. Using the low-density lipoprotein receptor knockout (LDLRo ) atherosclerosis mouse model, BM donor mice were fed a high-fat diet to induce atherosclerosis and orally inoculated with Porphyromonas gingivalis (Pg), a keystone periodontal pathogen; the second group was sham-inoculated. Naïve LDLR o mice were irradiated and transplanted with BM from one of the two donor groups. Recipients of BM from Pg-inoculated donors developed significantly more atherosclerosis, accompanied by cytokine/chemokines that suggested BM progenitor cell mobilization and were associated with atherosclerosis and/or PD. Using whole-genome bisulfite sequencing, 375 differentially methylated regions (DMRs) and global hypomethylation in recipients of BM from Pg-inoculated donors were observed. Some DMRs pointed to the involvement of enzymes with major roles in DNA methylation and demethylation. In validation assays, we found a significant increase in the activity of ten-eleven translocase-2 and a decrease in the activity of DNA methyltransferases. Plasma S-adenosylhomocysteine levels were significantly higher, and the S-adenosylmethionine to S-adenosylhomocysteine ratio was decreased, both of which have been associated with CVD. These changes may be related to increased oxidative stress as a result of Pg infection. These data suggest a novel and paradigm-shifting mechanism in the long-term association between periodontitis and atherosclerotic CVD.
RESUMO
High-fat Western diets contribute to tissue dysregulation of fatty acid and glucose intake, resulting in obesity and insulin resistance and their sequelae, including atherosclerosis. New therapies are desperately needed to interrupt this epidemic. The significant idea driving this research is that the understudied regulation of fatty acid entry into tissues at the endothelial cell (EC) interface can provide novel therapeutic targets that will greatly modify health outcomes and advance health-related knowledge. Dysfunctional endothelium, defined as activated, pro-inflammatory, and pro-thrombotic, is critical in atherosclerosis initiation, in modulating thrombotic events that could result in myocardial infarction and stroke, and is a hallmark of insulin resistance. Dyslipidemia from high-fat diets overwhelmingly contributes to the development of dysfunctional endothelium. CD36 acts as a receptor for pathological ligands generated by high-fat diets and in fatty acid uptake, and therefore, it may additionally contribute to EC dysfunction. We created EC CD36 knockout (CD36°) mice using cre-lox technology and a cre-promoter that does not eliminate CD36 in hematopoietic cells (Tie2e cre). These mice were studied on different diets, and crossed to the low density lipoprotein receptor (LDLR) knockout for atherosclerosis assessment. Our data show that EC CD36° and EC CD36°/LDLR° mice have metabolic changes suggestive of an uncompensated role for EC CD36 in fatty acid uptake. The mice lacking expression of EC CD36 had increased glucose clearance compared with controls when fed with multiple diets. EC CD36° male mice showed increased carbohydrate utilization and decreased energy expenditure by indirect calorimetry. Female EC CD36°/LDLR° mice have reduced atherosclerosis. Taken together, these data support a significant role for EC CD36 in systemic metabolism and reveal sex-specific impact on atherosclerosis and energy substrate use.
RESUMO
OBJECTIVE: To determine if AP5055 drug, an inhibitor of CD36, prevents the increase in Porphyromonas gingivalis (P. gingivalis) mediated atherosclerosis in low-density lipoprotein receptor knockout (LDLR KO) mice by targeting CD36. METHODS: Male LDLR KO mice were infected with P. gingivalis by oral lavage to induce periodontal disease and fed a western diet to induce atherosclerosis. Mice were treated with the CD36 inhibitor, AP5055 (1â¯mg/kg), or vehicle (1% DMSO). Aortae were dissected and stained with oil red-O for morphometric analysis; blood/plasma was collected to determine markers of inflammation by cytokine array and cholesterol levels. P. gingivalis-induced bone loss in mandibles was assessed using micro-CT. P. gingivalis lipopolysaccharide stimulated nuclear factor-kappa B (NF-κB) activity was measured using a reporter gene (secreted alkaline phosphatase) assay in AP5055 treated or untreated RAW-Blue macrophages. RESULTS: Isolated aortae showed a significant decrease in lesion area in the AP5055 treated group as compared to the control group. Mechanistically, in vitro analysis demonstrated that AP5055 inhibited NF-κB activity. Cytokine array showed a decrease in the expression of pro-inflammatory cytokines and decreased levels of plasma cholesterol in AP5055 treated mice. Micro-CT measurements of bone loss were not significant between the two groups. CONCLUSION: CD36 inhibitor AP5055 abrogates atherosclerotic lesion burden associated with periodontal disease, accompanied by a reduction in markers of inflammation. These experiments may support the development of drugs targeting CD36 for human disease.
Assuntos
Aterosclerose , Porphyromonas gingivalis , Animais , Antígenos CD36 , Lipopolissacarídeos , Masculino , Camundongos , NF-kappa B/metabolismo , Porphyromonas gingivalis/metabolismoRESUMO
BACKGROUND/AIM: Impact to the orofacial region, in particular teeth, is a frequent incident leading to injury in many sports and can result in health and economic costs for the injured individual. The majority of previous work has applied synthetic models such as plaster or stone, to form analogs of relevant structures to study the potential for impact-induced injury. Biomechanical studies that have applied tissue models (animal or human) for the purpose of determining the biomechanical measures associated with dental injury are rare. The aim of this study was to apply a simple ex vivo model based on swine dentition to ascertain which of a select list of measurable quantities associated with impact mechanics could predict luxation and fracture of teeth due to impact. METHODS: Mandibular central incisors of ex vivo swine dentitions were impacted using a linear drop tower with heights ranging from 1.20 m to 2.42 m. Seven mechanical predictors were assessed at impact and were then subjected to binary logistic regression techniques to determine which was the best predictor of luxations or fractures of the teeth. RESULTS: Of the seven mechanical predictors, (1) the velocity of the impacting body (R2 = 0.477), (2) a proxy measure for the change in kinetic energy of the impacting body (R2 = 0.586), and (3) the approximate energy absorbed by the tissue (R2 = 0.722) were found to be statistically significantly different (p < .05), offering the greatest specificity as indicated by receiver operator characteristics. Other measures that are frequently used in impact mechanics, including peak linear acceleration and velocity change, were not statistically significant predictors of tooth injury. CONCLUSION: Identifying mechanical predictors for dental injury of unprotected teeth provides a first step in understanding which aspects of an impact event attribute to dental injury and can lay the foundation for future studies that examine alteration in injury mechanics associated with protection devices.
Assuntos
Avulsão Dentária , Fraturas dos Dentes , Traumatismos Dentários , Animais , Incisivo/lesões , SuínosRESUMO
The megakaryocyte/erythroid Transient Myeloproliferative Disorder (TMD) in newborns with Down Syndrome (DS) occurs when N-terminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s ES cells and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur relatively late in hemopoiesis. GATA1s causes an arrest late in erythroid differentiation in vivo, and even more profoundly in ES-cell derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41hi megakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of cell cycle and reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focussed to understand the oncogenic action of GATA1s.
Assuntos
Síndrome de Down , Reação Leucemoide , Animais , Diferenciação Celular , Fator de Transcrição GATA1/genética , Humanos , Recém-Nascido , Megacariócitos , CamundongosRESUMO
INTRODUCTION: There may be seasonality in thyroid diseases and internet search data may provide information on disease patterns. In this study we used data from internet searches on hypothyroidism to assess seasonality in this disease. METHODS: We collected worldwide data, as well as data for countries in the southern hemisphere (Brazil, South Africa, and Australia), covering 15 years, from Google Trends with the search term "hypothyroidism+thyroiditis (the commonest cause of hypothyroidism)" and "fatigue+weakness (the commonest symptoms of hypothyroidism)". We looked for periodicity in relevant internet searches by calculating autocorrelations; we also looked at the cross-correlation of internet searches for "hypothyroidism+thyroiditis" and "fatigue+weakness" and we compared the results by season with the Kruskall-Wallis test. RESULTS: There was periodicity in the relevant internet searches and strong cross-correlations between internet searches for "hypothyroidism+thyroiditis" and "fatigue+weakness" worldwide and for South Africa and Australia. In both the northern and the southern hemispheres there were significantly more hypothyroidism-related internet searches during spring (p<0.05). CONCLUSION: Hypothyroidism was more popular in internet searches at springtime in the northern and the southern hemispheres. Thus, although this analysis is coarse, it seems that some seasonality can be inferred on hypothyroidism, taking into account the limitations of our approach.
RESUMO
There may exist an association between thyroid dysfunction/autoimmunity and parity. Autoimmune thyroiditis shows some degree of telomere shortening. Parity was recently found to be associated with telomere shortening. We hypothesize that among the factors affecting the tentative association between parity and thyroid dysfunction/autoimmunity shortened telomeres' may also be implicated. This could also be another facet of the processes leading to autoimmune thyroiditis.
Assuntos
Autoimunidade/genética , Telômero/ultraestrutura , Doenças da Glândula Tireoide/genética , Aborto Espontâneo , Biópsia por Agulha Fina , Feminino , Humanos , Modelos Teóricos , Paridade , Reação em Cadeia da Polimerase , Gravidez , Complicações na Gravidez , Tireoidite Autoimune/genéticaRESUMO
OBJECTIVE: To calculate the proportion of array comparative genomic hybridization (aCGH) pathogenic results, that would not be detectable by non-invasive prenatal screening (NIPS). METHODS: This is a comparative study using data from 2779 fetuses, which underwent invasive prenatal diagnosis, and the samples were analyzed using aCGH. The simulated NIPS assay would test for trisomies 21, 18, 13, monosomy X, 47, XXX, 47, XYY, and 47, XXY. Indications for invasive testing were grouped into categories and the absolute, relative rates of pathogenic/likely pathogenic results of aCGH analysis that would not be detectable by NIPS were calculated. RESULTS: The expected rate of aCGH-detected abnormalities that would not be detectable by NIPS was 28.0% (95% CI 14.3-47.6) for nuchal translucency (NT) 95 to 99th centile; 14.3% (95% 5.0-34.6) for NT > 99th centile; 34.2% (95% CI 21.1-50.1) for high-risk first-trimester results (regardless of NT); 52.4% (95% CI 32.4-71.7) for second-trimester markers; and 50.0% (95% CI 26.8-73.2) for advanced maternal age. The overall rate of aCGH pathogenic/likely pathogenic results was 5.0% and 44.0% (95% CI 36.0-52.2) of them would not be detected by NIPS. CONCLUSIONS: Approximately half of the abnormal aCGH results would not be detectable by standard NIPS assays, highlighting the necessity of pre-test counseling, and illustrating the limitations of NIPS. © 2017 John Wiley & Sons, Ltd.
Assuntos
Aberrações Cromossômicas/estatística & dados numéricos , Hibridização Genômica Comparativa , Diagnóstico Pré-Natal/estatística & dados numéricos , Adulto , Feminino , Humanos , Testes para Triagem do Soro Materno , Gravidez , Estudos RetrospectivosRESUMO
Palatogenesis is a complex process implying growth, elevation and fusion of the two lateral palatal shelves during embryogenesis. This process is tightly controlled by genetic and mechanistic cues that also coordinate the growth of other orofacial structures. Failure at any of these steps can result in cleft palate, which is a frequent craniofacial malformation in humans. To understand the etiology of cleft palate linked to the BMP signaling pathway, we studied palatogenesis in Bmp7-deficient mouse embryos. Bmp7 expression was found in several orofacial structures including the edges of the palatal shelves prior and during their fusion. Bmp7 deletion resulted in a general alteration of oral cavity morphology, unpaired palatal shelf elevation, delayed shelf approximation, and subsequent lack of fusion. Cell proliferation and expression of specific genes involved in palatogenesis were not altered in Bmp7-deficient embryos. Conditional ablation of Bmp7 with Keratin14-Cre or Wnt1-Cre revealed that neither epithelial nor neural crest-specific loss of Bmp7 alone could recapitulate the cleft palate phenotype. Palatal shelves from mutant embryos were able to fuse when cultured in vitro as isolated shelves in proximity, but not when cultured as whole upper jaw explants. Thus, deformations in the oral cavity of Bmp7-deficient embryos such as the shorter and wider mandible were not solely responsible for cleft palate formation. These findings indicate a requirement for Bmp7 for the coordination of both developmental and mechanistic aspects of palatogenesis.
Assuntos
Proteína Morfogenética Óssea 7/genética , Fissura Palatina/etiologia , Fissura Palatina/metabolismo , Animais , Proteína Morfogenética Óssea 7/deficiência , Proliferação de Células , Fissura Palatina/genética , Embrião de Mamíferos/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Transdução de Sinais/genética , Transdução de Sinais/fisiologiaRESUMO
OBJECTIVE: Thyroid hormone, requiring adequate maternal iodine intake, is critical for neurodevelopment in utero. Perchlorate and, less so, thiocyanate decrease uptake of iodine into the thyroid gland by competitively inhibiting the sodium/iodide symporter (NIS). It remains unclear whether environmental perchlorate exposure adversely affects thyroid function in first-trimester pregnant women. DESIGN: Cross-sectional. PATIENTS: 134 pregnant women from Athens, Greece, at mean ± SD 10·9 ± 2·3 weeks' gestation. MEASUREMENTS: Urinary iodide, perchlorate, and thiocyanate and thyroid function tests were measured. RESULTS: The median urinary iodide was 120 µg/l. Urinary perchlorate levels were detectable in all women: median (range) 4·1 (0·2-118·5) µg/l. Serum thyroperoxidase antibodies (TPO Ab) were detectable in 16% of women. Using Spearman's rank correlation analyses, there was no correlation between urinary perchlorate concentrations and serum TSH, although inverse correlations were seen between urine perchlorate and free T3 and free T4 values. In univariate analyses, urine thiocyanate was positively correlated with serum TSH, but was not associated with serum free T3 or free T4. Urine perchlorate was positively correlated with gestational age. In multivariate analyses adjusting for urinary iodide concentrations, urine thiocyanate, gestational age, maternal age and TPO Ab titres, urine perchlorate was not a significant predictor of thyroid function. CONCLUSIONS: Low-level perchlorate and thiocyanate exposure is ubiquitous, but, in adjusted analyses, is not associated with alterations in thyroid function tests among mildly iodine-deficient Greek women in the first trimester of pregnancy.
Assuntos
Exposição Ambiental/efeitos adversos , Percloratos/efeitos adversos , Gravidez/efeitos dos fármacos , Gravidez/fisiologia , Tiocianatos/efeitos adversos , Glândula Tireoide/efeitos dos fármacos , Glândula Tireoide/fisiopatologia , Adulto , Feminino , Desenvolvimento Fetal/efeitos dos fármacos , Grécia , Humanos , Iodetos/urina , Iodo/deficiência , Percloratos/urina , Primeiro Trimestre da Gravidez , Tiocianatos/urina , Testes de Função Tireóidea , Tireotropina/sangue , Tiroxina/sangue , Tri-Iodotironina/sangueRESUMO
TGFß-activated kinase 1 (TAK1), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, is considered a key intermediate in a multitude of innate immune signaling pathways. Yet, the specific role of TAK1 in the myeloid compartment during inflammatory challenges has not been revealed. To address this question, we generated myeloid-specific kinase-dead TAK1 mutant mice. TAK1 deficiency in macrophages results in impaired NF-κB and JNK activation upon stimulation with lipopolysaccharide (LPS). Moreover, TAK1-deficient macrophages and neutrophils show an enhanced inflammatory cytokine profile in response to LPS stimulation. Myeloid-specific TAK1 deficiency in mice leads to increased levels of circulating IL-1ß, TNF and reduced IL-10 after LPS challenge and sensitizes them to LPS-induced endotoxemia. These results highlight an antiinflammatory role for myeloid TAK1, which is essential for balanced innate immune responses and host survival during endotoxemia.
Assuntos
Endotoxemia/imunologia , Lipopolissacarídeos/farmacologia , MAP Quinase Quinase Quinases/imunologia , Macrófagos/imunologia , Animais , Citocinas/sangue , Imunidade Inata , Proteínas Quinases JNK Ativadas por Mitógeno , Lipopolissacarídeos/antagonistas & inibidores , MAP Quinase Quinase Quinases/deficiência , Camundongos , Camundongos Knockout , NF-kappa B , Neutrófilos/imunologiaRESUMO
The embryonic head development, including the formation of dental structures, is a complex and delicate process guided by specific genetic programs. Genetic changes and environmental factors can disturb the execution of these programs and result in abnormalities in orofacial and dental structures. Orofacial clefts and hypodontia/ oligodontia are examples of such abnormalities frequently seen in dental clinics. An insight into the mechanisms and genes involved in the formation of orofacial and dental structures has been gradually gained by genetic analysis of families and by the use of experimental vertebrate models such as the mouse and chick models. The development of novel clinical therapies for orofacial and dental pathological conditions depends very much on a detailed knowledge of the molecular and cellular processes that are involved in head formation.
Assuntos
Anodontia/genética , Fissura Palatina/genética , Palato Duro/embriologia , Transdução de Sinais/genética , Crânio/embriologia , Animais , Anodontia/embriologia , Fenda Labial/embriologia , Fenda Labial/genética , Fissura Palatina/embriologia , Fatores de Crescimento de Fibroblastos/fisiologia , Proteínas Hedgehog/fisiologia , Humanos , Fator de Transcrição MSX1/genética , Camundongos , Crista Neural , Fator de Transcrição PAX9/genética , Fatores de Transcrição Box Pareados/genética , Fator de Crescimento Transformador beta/fisiologia , Proteínas Wnt/genéticaRESUMO
BACKGROUND: Present technology uses mostly chimeric proteins as regulators and hormones or antibiotics as signals to induce spatial and temporal gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Here, we show that a chromosomally integrated yeast 'Leu3p-alpha-IotaRhoMu' system constitutes a ligand-inducible regulatory "off-on" genetic switch with an extensively dynamic action area. We find that Leu3p acts as an active transcriptional repressor in the absence and as an activator in the presence of alpha-isopropylmalate (alpha-IotaRhoMu) in primary fibroblasts isolated from double transgenic mouse embryos bearing ubiquitously expressing Leu3p and a Leu3p regulated GFP reporter. In the absence of the branched amino acid biosynthetic pathway in animals, metabolically stable alpha-IPM presents an EC(50) equal to 0.8837 mM and fast "OFF-ON" kinetics (t(50)ON = 43 min, t(50)OFF = 2.18 h), it enters the cells via passive diffusion, while it is non-toxic to mammalian cells and to fertilized mouse eggs cultured ex vivo. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that the 'Leu3p-alpha-IotaRhoMu' constitutes a simpler and safer system for inducible gene expression in biomedical applications.
Assuntos
Cromossomos de Mamíferos/metabolismo , Engenharia Genética/métodos , Malatos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Transativadores/metabolismo , Animais , Sequência de Bases , Feminino , Fibroblastos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Gravidez , Saccharomyces cerevisiae/genéticaRESUMO
T cell activation and tolerance are delicately regulated by costimulatory molecules. Although B and T lymphocyte attenuator (BTLA) has been shown as a negative regulator for T cell activation, its role in peripheral T cell tolerance induction in vivo has not been addressed. In this study, we generated a novel strain of BTLA-deficient mice and used three different models to characterize the function of BTLA in controlling T cell tolerance. In an oral tolerance model, BTLA-deficient mice were found resistant to the induction of T cell tolerance to an oral Ag. Moreover, compared with wild-type OT-II cells, BTLA(-/-) OT-II cells were less susceptible to tolerance induction by a high-dose OVA peptide administered i.v. Finally, BTLA(-/-) OT-I cells caused autoimmune diabetes in RIP-mOVA recipient mice. Our results thus demonstrate an important role for BTLA in the induction of peripheral tolerance of both CD4(+) and CD8(+) T cells in vivo.