RESUMO
Breast cancer stem cells (BCSC) are presumed to be responsible for treatment resistance, tumor recurrence and metastasis of breast tumors. However, development of BCSC-targeting therapies has been held back by their heterogeneity and the lack of BCSC-selective molecular targets. Here, we demonstrate that RAC1B, the only known alternatively spliced variant of the small GTPase RAC1, is expressed in a subset of BCSCs in vivo and its function is required for the maintenance of BCSCs and their chemoresistance to doxorubicin. In human breast cancer cell line MCF7, RAC1B is required for BCSC plasticity and chemoresistance to doxorubicin in vitro and for tumor-initiating abilities in vivo. Unlike Rac1, Rac1b function is dispensable for normal mammary gland development and mammary epithelial stem cell (MaSC) activity. In contrast, loss of Rac1b function in a mouse model of breast cancer hampers the BCSC activity and increases their chemosensitivity to doxorubicin treatment. Collectively, our data suggest that RAC1B is a clinically relevant molecular target for the development of BCSC-targeting therapies that may improve the effectiveness of doxorubicin-mediated chemotherapy.
Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Animais , Feminino , Humanos , Camundongos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Doxorrubicina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Mamárias Animais/patologia , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/patologiaRESUMO
Dissemination of tumour cells to the bone marrow is an early event in breast cancer, however cells may lie dormant for many years before bone metastases develop. Treatment for bone metastases is not curative, therefore new adjuvant therapies which prevent the colonisation of disseminated cells into metastatic lesions are required. There is evidence that cancer stem cells (CSCs) within breast tumours are capable of metastasis, but the mechanism by which these colonise bone is unknown. Here, we establish that bone marrow-derived IL1ß stimulates breast cancer cell colonisation in the bone by inducing intracellular NFkB and CREB signalling in breast cancer cells, leading to autocrine Wnt signalling and CSC colony formation. Importantly, we show that inhibition of this pathway prevents both CSC colony formation in the bone environment, and bone metastasis. These findings establish that targeting IL1ß-NFKB/CREB-Wnt signalling should be considered for adjuvant therapy to prevent breast cancer bone metastasis.
Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias da Mama/metabolismo , Interleucina-1beta/metabolismo , Células-Tronco Neoplásicas/metabolismo , Via de Sinalização Wnt , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Sulfassalazina/administração & dosagem , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
PURPOSE OF REVIEW: This review will discuss how the steroid hormones, estrogen and progesterone, as well as treatments that target steroid receptors, can regulate cancer stem cell (CSC) activity. The CSC theory proposes a hierarchical organization in tumors where at its apex lies a subpopulation of cancer cells endowed with self-renewal and differentiation capacity. RECENT FINDINGS: In breast cancer (BC), CSCs have been suggested to play a key role in tumor maintenance, disease progression, and the formation of metastases. In preclinical models of BC, only a few CSCs are required sustain tumor re-growth, especially after conventional anti-endocrine treatments. CSCs include therapy-resistant clones that survive standard of care treatments like chemotherapy, irradiation, and hormonal therapy. SUMMARY: The relevance of hormones for both normal mammary gland and BC development is well described, but it was only recently that the activities of hormones on CSCs have been investigated, opening new directions for future BC treatments and CSCs.
RESUMO
This corrects the article DOI: 10.1038/nrc.2016.140.
RESUMO
Patient-derived xenografts (PDXs) have emerged as an important platform to elucidate new treatments and biomarkers in oncology. PDX models are used to address clinically relevant questions, including the contribution of tumour heterogeneity to therapeutic responsiveness, the patterns of cancer evolutionary dynamics during tumour progression and under drug pressure, and the mechanisms of resistance to treatment. The ability of PDX models to predict clinical outcomes is being improved through mouse humanization strategies and the implementation of co-clinical trials, within which patients and PDXs reciprocally inform therapeutic decisions. This Opinion article discusses aspects of PDX modelling that are relevant to these questions and highlights the merits of shared PDX resources to advance cancer medicine from the perspective of EurOPDX, an international initiative devoted to PDX-based research.
Assuntos
Neoplasias/terapia , Medicina de Precisão , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Biomarcadores Tumorais/análise , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Imunoterapia , Camundongos , Metástase Neoplásica , Neoplasias/patologia , Células-Tronco Neoplásicas/fisiologiaRESUMO
Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and "Triple-negative" (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward "credentialing" of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.
Assuntos
Neoplasias da Mama/patologia , Modelos Animais de Doenças , Animais , Feminino , Xenoenxertos , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Transplante de Neoplasias , Pesquisa Translacional BiomédicaRESUMO
Breast cancer specific mortality results from tumour cell dissemination and metastatic colonisation. Identification of the cells and processes responsible for metastasis will enable better prevention and control of metastatic disease, thus reducing relapse and mortality. To better understand these processes, we prospectively collected 307 patient-derived breast cancer samples (n = 195 early breast cancers (EBC) and n = 112 metastatic samples (MBC)). We assessed colony-forming activity in vitro by growing isolated cells in both primary (formation) and secondary (self-renewal) mammosphere culture, and tumour initiating activity in vivo through subcutaneous transplantation of fragments or cells into mice. Metastatic samples formed primary mammosphere colonies significantly more frequently than early breast cancers and had significantly higher primary mammosphere colony formation efficiency (0.9 % vs. 0.6 %; p < 0.0001). Tumour initiation in vivo was significantly higher in metastatic than early breast cancer samples (63 % vs. 38 %, p = 0.04). Of 144 breast cancer samples implanted in vivo, we established 20 stable patient-derived xenograft (PDX) models at passage 2 or greater. Lung metastases were detected in mice from 14 PDX models. Mammosphere colony formation in vitro significantly correlated with the ability of a tumour to metastasise to the lungs in vivo (p = 0.05), but not with subcutaneous tumour initiation. In summary, the breast cancer stem cell activities of colony formation and tumour initiation are increased in metastatic compared to early samples, and predict metastasis in vivo. These results suggest that breast stem cell activity will predict for poor outcome tumours, and therapy targeting this activity will improve outcomes for patients with metastatic disease.
Assuntos
Neoplasias da Mama/patologia , Mama/patologia , Transformação Celular Neoplásica/patologia , Xenoenxertos/patologia , Metástase Neoplásica/patologia , Animais , Técnicas de Cultura de Células/métodos , Proliferação de Células/fisiologia , Progressão da Doença , Feminino , Humanos , Camundongos , Estudos ProspectivosRESUMO
Breast cancers (BCs) typically express estrogen receptors (ERs) but frequently exhibit de novo or acquired resistance to hormonal therapies. Here, we show that short-term treatment with the anti-estrogens tamoxifen or fulvestrant decrease cell proliferation but increase BC stem cell (BCSC) activity through JAG1-NOTCH4 receptor activation both in patient-derived samples and xenograft (PDX) tumors. In support of this mechanism, we demonstrate that high ALDH1 predicts resistance in women treated with tamoxifen and that a NOTCH4/HES/HEY gene signature predicts for a poor response/prognosis in 2 ER+ patient cohorts. Targeting of NOTCH4 reverses the increase in Notch and BCSC activity induced by anti-estrogens. Importantly, in PDX tumors with acquired tamoxifen resistance, NOTCH4 inhibition reduced BCSC activity. Thus, we establish that BCSC and NOTCH4 activities predict both de novo and acquired tamoxifen resistance and that combining endocrine therapy with targeting JAG1-NOTCH4 overcomes resistance in human breast cancers.
Assuntos
Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/genética , Proteínas de Ligação ao Cálcio/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Receptores Notch/metabolismo , Família Aldeído Desidrogenase 1 , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Benzazepinas/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/mortalidade , Neoplasias da Mama/patologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Feminino , Fulvestranto , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Proteína Jagged-1 , Proteínas de Membrana/genética , Camundongos , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Receptor Notch4 , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptores Notch/antagonistas & inibidores , Receptores Notch/genética , Retinal Desidrogenase/antagonistas & inibidores , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo , Proteínas Serrate-Jagged , Transdução de Sinais , Análise de Sobrevida , Tamoxifeno/farmacologia , Fatores de Transcrição HES-1 , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Breast cancer stem cells (BCSCs) are potent tumor-initiating cells in breast cancer, the most common cancer among women. BCSCs have been suggested to play a key role in tumor initiation which can lead to disease progression and formation of metastases. Moreover, BCSCs are thought to be the unit of selection for therapy-resistant clones since they survive conventional treatments, such as chemotherapy, irradiation, and hormonal therapy. The importance of the role of hormones for both normal mammary gland and breast cancer development is well established, but it was not until recently that the effects of hormones on BCSCs have been investigated. This review will discuss recent studies highlighting how ovarian steroid hormones estrogen and progesterone, as well as therapies against them, can regulate BCSC activity.
Assuntos
Neoplasias da Mama/patologia , Estrogênios/fisiologia , Neoplasias Hormônio-Dependentes/patologia , Células-Tronco Neoplásicas/fisiologia , Progesterona/fisiologia , Antineoplásicos Hormonais/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/fisiopatologia , Divisão Celular , Linhagem Celular Tumoral , Células Clonais/fisiologia , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica , Proteínas de Neoplasias/fisiologia , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/fisiopatologia , Comunicação Parácrina , Receptores de Estrogênio/fisiologia , Receptores de Progesterona/fisiologia , Transdução de SinaisRESUMO
The Aurora family of kinases, play a fundamental role in cell division and are overexpressed in several cancers including colon. The activity of barasertib-hQPA, a selective inhibitor of Aurora-B kinase (ABK) was investigated in a range of preclinical models of gastrointestinal cancer. Treatment with barasertib-hQPA produced anti-proliferative and cytotoxic effects across a panel of human colorectal cancer (CRC) cell lines in vitro. Prodrug, barasertib [48-h subcutaneous (s.c.) infusion; 150 mg/kg/day] inhibited the growth of SW620, Colo205, HCT116 human colorectal tumor xenografts in nude mice significantly (Student's t-test, P<0.05, n=10-12 per group). Flow cytometric analysis of single cells from disaggregated barasertib-treated SW620 tumors revealed a decrease in phosphorylated histone H3 (phH3) and an increase in tumor cells with ≥4N DNA content P<0.05). The activity of barasertib was then examined in ApcMin/+ mice, a spontaneous model of early intestinal neoplasia. Macroscopic evaluation of the small intestine revealed that barasertib treatment [25 mg/kg intra-peritoneal (i.p.) Q1Dx4 each week for 3 weeks] of 8-week old ApcMin/+ mice produced a 39% reduction in macroadenoma number (P=0.02) and a 43% reduction in overall adenoma burden (P=0.02) compared with vehicle-treated controls. Quantification of microscopic adenomas revealed a >64% reduction in the number of adenomas spanning more than one villus. Histological analysis of these adenomas revealed a number of distinct changes in barasertib-treated ApcMin/+ mice, including a 94% reduction in the proportion of phospho-histone H3-positive cells (P<0.001) and a 53% reduction in the number of cells per adenoma (P=0.001). These results provide a scientific rationale for investigating ABK inhibitors as a treatment for intestinal cancer.
Assuntos
Aurora Quinase B/biossíntese , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Gastrointestinais/genética , Animais , Aurora Quinase B/antagonistas & inibidores , Aurora Quinase B/genética , Neoplasias Colorretais/patologia , Neoplasias Gastrointestinais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Histonas/genética , Humanos , Camundongos , Fosforilação , Quinazolinas/administração & dosagem , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
The Apc(MIN/+) mouse is a well-characterised model of intestinal tumourigenesis in which animals develop macroscopically detectable adenomas. However, most of the adenomas are formed in the small intestine and resolution of events in the colon, the most relevant site for human disease, is limited. Inducing colitis with dextran sodium sulphate (DSS) can selectively enhance the development of lesions in the colon. We demonstrated that a DSS pre-treatment is well tolerated and effective at inducing colon adenomas in an Apc(MIN/+) mouse model. We then investigated the effect of inhibiting vascular endothelial growth factor (VEGFR)- and epidermal growth factor receptor (EGFR)-dependent signalling pathways on the development of adenomas induced in DSS-pretreated (DSS/Apc(MIN/+)) or non-DSS-pretreated (Apc(MIN/+)) mice using vandetanib (ZD6474), a potent and selective inhibitor of VEGFR and EGFR tyrosine kinase activity. Eight-week old Apc(MIN/+) mice were given either drinking water or 1.8% DSS and then vandetanib (ZD6474) (50 mg/kg/day) or vehicle by oral gavage for 28 days and sacrificed 24 h after the last dose and assessed for adenoma formation in the intestines. DSS pre-treatment was well tolerated and significantly enhanced formation of adenomas in the colon of control Apc(MIN/+) mice. Vandetanib treatment significantly reduced adenoma formation in the small intestine by 68% (P=0.001) and the colon by 77% (from 13.8 to 3.1, P=0.01) of DSS-pretreated Apc(MIN/+) mice. In the Apc(MIN/+) group, vandetanib also reduced the mean number of adenomas in the small intestine by 76% (P<0.001) and in the colon by 60% (from 3.9 to 1.5, P=0.1). DSS-pre-treatment increased the resolution of the model, allowing us to confirm statistically significant effects of vandetanib on the development and growth of colon adenomas in the Apc(MIN/+) mouse. Moreover these preclinical data provide a rationale for studying the effects of vandetanib in early stages of intestinal cancer in the clinic.